
 SpecPipe: Democratizing Access to Spectrum Data

 Project 85

 Authors: Hao-Ming Hsu, Omair Alam, Will Almy, Alice Lee

 2

 Contents

 Contents .. 3
 Executive Summary ... 4
 1. Introduction .. 4

 A. Problems and Opportunities ... 4
 B. Proposed Solution: SpecPipe .. 5

 2. Related Works .. 5
 A. Previous Generation of SpecPipe ... 5
 B. Electrosense ... 5
 C. Electrosense + ... 6
 D. Limitations of Previous Works .. 6

 3. Design Goals ... 7
 A. Accessibility .. 7
 B. Extensibility .. 7
 C. Scalability .. 8

 4. Architecture .. 8
 A. Cloud Architecture .. 11
 B. Edge Node Architecture .. 11
 C. Software Development Kit .. 11

 5. Deliverables ... 12
 A. Monitoring Dashboard .. 14
 B. Speech to text .. 15
 C. Controller plane .. 16
 D. IQEngine integration .. 16

 6. Conclusion ... 17
 A. Results ... 17
 B. Future Works ... 17

 7. References ... 18
 8. Appendix ... 19

 A. API Specification .. 19
 B. Software Bill of Materials ... 21
 C. Exact Software Requirements ... 22

 SpecPipe Go Packages .. 22
 External Docker Images .. 24
 Demo Python Packages ... 24
 Frontend Demo Dependencies .. 25

 3

 Executive Summary

 In the digital landscape, the radio spectrum serves as the backbone for a plethora of technologies, including WiFi

 and 5G. However, the potential for individual exploration and scientific analysis in this domain is hampered by the

 lack of accessible, scalable, and customizable systems for users to access, analyze and contribute to spectrum data.

 Recognizing these challenges and opportunities, this paper introduces SpecPipe: an open-source modern, scalable

 AI/ML-facilitating data pipeline that empowers users to engage with radio data using minimal hardware and

 configuration requirements. Through a detailed comparison with related works, we demonstrate SpecPipe’s

 advancements in accessibility, extensibility, and scalability over previous efforts in this field. We then elaborate on

 the architecture of SpecPipe that meets the aforementioned goals and enables users to implement their applications

 via Software Development Toolkits (SDKs) aimed at black-boxing the core system. We outline tangible results

 including building the SpecPipe framework, SpecPipe Python SDKs, Grafana visualizations for load monitoring,

 and an extensive documentation website. Finally, we propose directions for future work to expand the capabilities of

 SpecPipe and foster a wider community of contributors and users.

 1. Introduction
 Radio spectrum powers everything around us, from WiFi, 5G, GPS, and airplane navigation data to the common FM

 radio found in cars. Having a system that can empower engineers, scientists, and hobbyists to access, analyze, and

 contribute to this data through their own radios is of paramount importance to scientific growth and individual

 exploration. The link to our GitHub repositories can be found at: https://github.com/ml4wireless/specpipe ,

 https://github.com/ml4wireless/specpipe-sdk-py , and https://github.com/ml4wireless/specpipe-demo .

 A. Problems and Opportunities

 Creating a system that can allow users to meet the aforementioned goals is a complex endeavor due to the diversity

 of signal types in the spectrum as well as the complications in dealing with data of this magnitude.

 Radio waves operate within a subset of the electromagnetic wavelengths, typically occupying frequencies between 3

 kHz to 300 GHz. Various signal types subdivide across many non-overlapping bands within this range; for example,

 FM tends to operate between 88 – 108 MHz. These signals not only vary in their signature and the bands they use,

 but also in the geographic locations they are emitted from. Additionally, they require different algorithms to process

 and decode them. Besides the complication in signal processing, the sheer volume of spectrum data being produced

 every second poses a data engineering challenge, up to multiple Gigabytes per minute. Users accessing both raw and

 processed spectrum data require near real-time updates from receivers across the world, so the system needs to have

 high bandwidth, low latency, and must guarantee data integrity.

 4

https://github.com/ml4wireless/specpipe
https://github.com/ml4wireless/specpipe-sdk-py
https://github.com/ml4wireless/specpipe-demo

 B. Proposed Solution: SpecPipe

 To resolve these issues, we have developed SpecPipe: a modern, scalable AI/ML-facilitating data pipeline for

 spectrum. Specifically, we have focused on the goals of usability, customizability as well as ease of machine

 learning integrations and monitoring. We have accomplished these goals by building SpecPipe as an open-source

 project free for people to access and use, with easy-to-follow documentation, and a plethora of startup examples that

 allow users to understand our framework interactively. This platform’s core values of accessibility, extensibility, and

 scalability ensure that individual users can start to work with radio data with inexpensive hardware, minimal

 configuration, and easy onboarding docs.

 2. Related Works
 Several research endeavors have taken place to enable public access to spectrum data. Zheleva et al. developed an

 end-to-end system, Spectrum Observatory [10], to measure and characterize spectrum data. Building on top of

 Spectrum Observatory, Roy, S. designed CityScape [12], which is a metro-scale observatory that measures

 long-duration IQ data. Iyer et al. presented SpecNet [11] which enables collection and measurement of real-time

 spectrum. The radio frequency community has also developed an open-sourced web tool, IQEngine [13], for

 analyzing, processing, and sharing radio frequency data.

 In the following sections, we perform a literature review with the most related works, including the previous

 generation of SpecPipe [9], Electrosense [1], Electrosense+ [2]. The overall comparison of the works is shown in

 Table 1.

 A. Previous Generation of SpecPipe

 Jiang et al. proposed the first version of SpecPipe, which is an end-to-end data pipeline for spectrum data. They

 utilized the pipeline to develop a showcase website for interacting with the airplane tracker application. This work

 builds upon several existing approaches in the areas of data pipeline design and spectrum sensing. The client

 program receives and processes the raw ADS-B data from airplanes, followed by the annotator module to enrich the

 data with additional information. With the annotated information, Elasticsearch [7], a distributed search engine, not

 only stores but also searches and analyzes the data. Finally, the backend web server fetches annotated ADS-B data

 from Elasticsearch and serves it to the front end. Besides the system and the showcase website, they provided

 documentation for deploying the system and a monitoring system health dashboard with Prometheus [8].

 B. Electrosense

 Rajendran et al. proposed a centralized system architecture, Electrosense, which facilitated the accessibility of radio

 data. Their goal was to create a reliable and efficient environment for the public to utilize spectrum data while

 addressing potential security and privacy concerns. They accomplished this by crowdsourcing and utilizing low-cost

 sensors based on software-defined radios (SDRs) [3] and Raspberry Pis, measuring spectrum data in the range of 20

 5

 MHz to 6 GHz. The main infrastructure that controls data flow is a Message Queue Telemetry Transport (MQTT).

 The distributed system backend is composed of an ingestion layer, a speed layer, and a serving layer. The speed

 layer uses Apache Kafka [6], a message queuing system, as a buffer for the incoming data, preventing data loss.

 There are two different data pipelines following the ingestion layer which are the speed and serving layers. The

 batch layer employs the Hadoop Distributed File System (HDFS) [4] and Apache Spark [5] to perform nearly

 real-time parallel processing. Finally, the serving layer provides an open API for users to easily access the processed

 data.

 By combining all the components, they successfully monitored spectrum data using low-cost sensors with a

 centralized backend system.

 C. Electrosense +

 Building on top of Electrosense, Calvo-Palomino et al. developed Electrosense+, which also allows real-time

 spectrum data decoding. Besides the general decoding purpose, they also added a peer-to-peer communication

 feature to the architecture. With this direct pipeline between users and sensors, they increased the throughput for

 scalable data decoding. In addition to the peer-to-peer channel, they provided users incentives by developing a token

 reward system, where users earn tokens whenever their sensors are online and being used. Security is another

 important topic mentioned in their work. Since users do not receive raw spectrum data, they added a privacy layer

 on top of the decoding process to prevent malicious data leakage.

 D. Limitations of Previous Works

 The aforementioned works addressed the issue of giving public access to spectrum data, still, there are some

 limitations of the mentioned solutions. For example, the documentation and guidelines provided by the authors are

 limited, such that they still leave a high barrier of entry for the users. Moreover, the architectures as designed are

 unable to be customized. In other words, the data format that the system is receiving is not able to be modified in

 real time. Another limitation of Electrosense and Electrosense+ is that the system design lacks a health check

 component. Therefore, potential issues or failures within their systems may be overlooked, leading to increased

 downtime. Although the previous generation of SpecPipe has a health check component, the provided information

 on the dashboard is still limited. For example, it does not show the geolocation, data rate, and registration time of

 each device.

 Due to these intricacies, the prior generation of SpecPipe, Electrosense, and Electrosense+ lack a myriad of key

 features including usability and flexibility that have prevented their mass adoption by end users. Created to fulfill

 specific needs as mentioned above, they lack extensibility and observability. Parsing through the user manuals for

 these systems is time-consuming and tedious, making development difficult and error-prone. These limitations

 prevent a general adoption of said technologies to less technical or resourceful audiences, and therefore, limit the

 ability of users to be able to use and contribute to spectrum data.

 6

 Electrosense [1] Electrosense+ [2] First generation of
 SpecPipe [9]

 SpecPipe
 (This work)

 Message broker MQTT MQTT NATS NATS

 Peer-to-peer
 communication No Yes No Yes

 System health
 monitoring No No Grafana Dashboard Grafana Dashboard

 Extensibility Low Low Low High

 Barrier to entry High High Medium Low

 Real-time data
 support Yes Yes No Yes

 Table 1. Comparison of the works

 3. Design Goals
 In this section, we focus on mainly three aspects of the system, accessibility, extensibility, and scalability.

 A. Accessibility

 SpecPipe is designed for simple, rapid deployment on any platform. It provides containerized solutions using

 Docker that allow for one-click deployment on various infrastructure environments and platforms. Comprehensive

 documentation and hands-on examples guide users through a wide range of use cases ranging from basic to

 advanced. The documentation covers topics such as connecting data sources, configuring pipelines, inferencing with

 ML models, and generating visual results. This enables users across skill levels to quickly get up and running with

 their desired spectrum analysis tasks.

 B. Extensibility

 SpecPipe is designed as a highly modular and flexible framework so users can easily develop custom plugins with

 any technology stack. It is deeply integrated with the open-source software ecosystem and provides out-of-the-box

 support for leading open source technologies. For example, it uses NATS JetStream for scalable streaming data

 ingestion. Apache Spark integrates natively for distributed big data processing and analytics. gRPC powers

 high-performance communication between components. SpecPipe also offers deep integration with popular machine

 learning frameworks like TensorFlow and PyTorch for custom machine learning (ML) model development and

 deployment.

 7

 The modular architecture makes it simple to extend SpecPipe by developing connections to new data sources,

 adding additional processing nodes, or implementing custom ML algorithms. Developers can leverage their

 preferred languages and frameworks to extend functionality through language-agnostic APIs. SpecPipe handles the

 underlying orchestration and deployment so users can focus on writing their own custom logic to suit their specific

 needs. The extensive open-source integrations also allow users to tap into rich ecosystems of analytics, data science,

 statistics, and ML tools.

 C. Scalability

 SpecPipe is optimized for scalability from the start. It can easily scale to thousands of sensor nodes with minimal

 effort as a result of its distributed architecture. Horizontal scaling is supported out of the box by adding new pipeline

 instances, while auto-scaling capabilities dynamically allocate resources based on load. SpecPipe maintains a small

 memory footprint even at a massive scale to minimize computing and energy costs. One way it achieves this is by

 leveraging Apache Spark for distributed processing, meaning petabyte-scale datasets can be analyzed across clusters

 while individual nodes operate efficiently.

 SpecPipe also offers fine-grained tuning of scalability by allowing different pipeline stages to scale independently.

 Additional ingestion capacity can be added to handle high data volumes from sensors, while the distributed

 processing layer can scale analysis and ML workloads independently of the ingestion rates. SpecPipe automatically

 handles the routing of data across the scale-out architecture. This flexible scaling unlocks new spectrum analysis

 scenarios involving vast numbers of IoT sensors or complex analytics.

 4. Architecture
 SpecPipe is built to transport, store, and organize large amounts of data. The architecture supports many ML and AI

 workloads related to Spectrum Data, but does not implement these ML/AI workloads itself. End users do not modify

 the code of SpecPipe directly in most cases, but rather implement their own applications using SpecPipe’s flexible

 APIs.

 Term Description

 NATS (Neural Autonomic

 Transport System)

 NATS is the key pillar that SpecPipe was built upon, handling communication, data,

 and configuration requests across nodes. NATS is a lightweight and

 high-performance messaging system designed for distributed systems, offering

 simplicity, reliability, and scalability for cloud-native applications.

 Edge Node An edge node is a device (such as a laptop or a Raspberry Pi) that has a

 software-defined radio attached to it via USB and is connected to the system. The

 8

 Term Description

 radio is listening at a particular frequency that is initially set when the edge device

 registers with the system but can be changed dynamically later.

 Applications Applications are software that run on devices connected to the system. An

 application can receive spectrum from an edge node, get metadata of edge nodes

 (such as sampling rate, geolocation), and update the configuration of an edge node.

 Health Check Server The Health Check Server is an example of an Application that can run on devices

 connected to the system. The purpose of the health check system is to check the

 health of the nodes.

 Controller API A controller API serves as the interface for managing and orchestrating resources

 within SpecPipe, enabling Applications to programmatically interact with and

 manipulate the configuration and behavior of the Edge Nodes. SpecPipe currently

 supports 3 APIs for both FM devices and IQ devices, including read device

 configurations, update devices, and get all devices. The Open API is listed in

 Appendix A.

 Table 2. Key Terms for Architecture

 The SpecPipe architecture can be understood using the key terms of the architecture (Table 2), the architecture

 diagram (Figure 1) and the information paths supported (Table 3).

 9

 Figure 1. SpecPipe Architecture

 Information path Explanation

 Data Flow (Line ‘1’

 in Figure 1)

 Raw IQ and Demodulated radio data is sent from Edge Nodes via NATS to Applications.

 Peer to Peer Flow

 (Line ‘2’ in Figure 1)

 Raw IQ radio data is sent from Edge Nodes to Applications via a socket. This is useful for

 sending high bit rate (> 5 mbps) Raw IQ Data since if this data would be sent via NATS,

 the system would get bogged down.

 Control Flow 1 (Line

 ‘3’ in Figure 1)

 Applications update the configuration of an edge node (such as changing its sampling rate

 or frequency) via the Controller API. The Controller API then publishes a message on the

 appropriate NATS subject to change that setting for an Edge Node.

 Control Flow 2 (Line

 ‘4’ in Figure 1)

 Applications can get edge node metadata (such as their location and sampling rate) via the

 Controller API.

 Monitoring Flow 2

 (Line ‘5’, ‘6’ in

 Figure 1)

 Applications can monitor the health of the Edge Nodes by running the health command.

 When this command is issued, NATS sends heartbeat requests to all the Edge Nodes (line

 5). Then, the edge nodes respond with a heartbeat (line 6) to the server via NATS.

 Table 3. SpecPipe Information Paths

 10

 Many examples have been created for using the SpecPipe framework

 (https://ml4wireless.github.io/specpipe/examples), two of which (FM and ADS-B) are shown below:

 A. Cloud Architecture

 To support running in a Cloud environment, the entire application stack has been containerized into various Docker

 images, bundled together with a Docker Compose manifest for easy deployment of key services. One such image

 contains the Controller service or the backend API server that supports interaction with SpecPipe and any number of

 edge nodes. Additional images are built to be run on the edge nodes themselves which set up a standardized

 interface for data collection across different host environments. A majority of SpecPipe’s application code is written

 in Go, a highly performant compiled language, allowing for resource-efficient deployments to Cloud environments

 or hosts with low computing power. Lastly, NATS represents the key pillar of SpecPipe’s functionality, handling

 communication, data transfer, and forwarding of configuration requests across nodes.

 B. Edge Node Architecture

 SpecPipe’s scalable infrastructure allows any number of edge nodes to connect and begin collecting data, either for

 immediate consumption or recording to long-term storage. The edge container contains multiple utilities for

 handling data, including various common decoding methods such as FM and AM radio. Direct streaming of IQ data

 is also supported but may be bandwidth intensive. Additional functionality includes the ability of edge nodes to

 directly forward data in a peer-to-peer environment without needing to interface directly with the server; this

 supports the separation of concerns at the edge and can support customized decoding or data processing methods

 before data is sent over the network.

 C. Software Development Kit

 With a flexible system to support many workflows on both the client and the server, additional functionality includes

 an auto-generated API and client SDK for interacting with SpecPipe’s various systems. These APIs help with

 configuration, data consumption, and monitoring from external applications without needing to modify any internal

 11

https://ml4wireless.github.io/specpipe/examples

 SpecPipe source code. These APIs and SDKs can be used by a wide variety of programming languages and

 workflows, ensuring future compatibility with multiple products and technology stacks.

 5. Deliverables
 Publicly accessible artifacts for SpecPipe include three source code repositories. specpipe itself contains the

 components to run the backend infrastructure in the cloud and also includes customizable software for distribution to

 edge nodes. There are also six different independent examples shown under the _example directory of this

 repository. An additional repository, specpipe-sdk-py , contains SpecPipe’s Python SDK which allows developers to

 interact with and develop tooling around SpecPipe with their preferred language of choice. The complete software

 bill of materials can be found in Appendix B

 Documentation has been a key priority in SpecPipe’s development, aligning with our project goals of creating an

 accessible solution to users from all backgrounds. The system architecture, as well as onboarding steps, are included

 both in our project README files as well as a standalone documentation site hosted within GitHub Pages, as shown

 in Figure 2 and Figure 3. The steps to get SpecPipe up and running are presented in a quick and minimal fashion

 while also providing additional resources for advanced users looking to customize and extend the system. The

 documentation website is developed using Docusaurus.

 For many users, the quickest way to understand a software system is to see real world examples of how it can be

 used. Therefore, specpipe-demo , covering a variety of different use cases that SpecPipe can help with is presented.

 The website is developed using TypeScript using the framework React, specifically Next.js framework. We use

 TailwindCSS as the CSS framework so as to streamline and expedite the development process. The details of the

 demos are discussed in the following sections A to D.

 12

https://github.com/ml4wireless/specpipe
https://github.com/ml4wireless/specpipe-sdk-py
https://github.com/ml4wireless/specpipe-demo

 Figure 2. SpecPipe documentation website hosted on GitHub pages using Docusauraus framework.

 Figure 3. SpecPipe documentation website illustrating commands to setup SpecPipe.

 13

 Figure 4. SpecPipe demo website landing page.

 A. Monitoring Dashboard

 In addition to the system itself, we have also developed tooling and workflows for observability in a production

 environment, as shown in Figure 5 and Figure 6. A Grafana dashboard template is included with the SpecPipe

 source code with various panels to monitor resource usage, data flow, and other key metrics around system health

 and performance. Metrics are exposed to Grafana through Prometheus, a time series database that is built with

 user-friendly extensibility in mind. After registering an edge device, its information will automatically appear on the

 Grafana dashboard, including charts of device geo-locations and online status, all ready to use in our system.

 Figure 5. Grafana Dashboard of SpecPipe showing the geolocation, metadata, data rate of FM devices as well as the

 metadata of IQ devices.

 14

 Figure 6. Grafana Dashboard showing the system health status of NATS JetStream, including storage used and

 consumer metrics.

 B. Speech to text

 In the speech to text demo, a basic FastAPI web server is employed to retrieve FM data from NATS. This data is

 then decoded into .wav chunks, optimized for compatibility with the SpeechRecognition model. The resulting text is

 streamed to listeners via websocket communication. Additionally, a demonstration frontend application accompanies

 the setup, utilizing websocket reception to display live text in a scrollable text box. We streamed the audio from our

 mock server, dev-0-mock , to ensure that the audio contains words. As shown in Figure 7, the corresponding caption

 was automatically generated.

 Figure 7. Speech to text demo of the website. The captions are generated using the speech to text model.

 15

 C. Controller plane

 The controller plane comprises a device selector at the top, defaulting to the mock device, dev-0-mock . Clicking the

 volume button adjacent to it initiates audio playback. Below, three sliders adjust frequency, sample rate, and

 resample rate. To alter device configuration, adjust the sliders and click the modify button below.

 Figure 8. SpecPipe demo website that enables users to modify configuration of registered devices.

 D. IQEngine integration

 IQEngine is a web-based tool designed for analyzing radio frequency (RF) data, facilitating the processing

 as well as sharing of RF data and displaying spectrograms directly within web browsers. We have integrated the IQ

 Engine function into our demo website. Users can initiate analysis by clicking on Local File Pair on the left-hand

 side and uploading example data files, namely iq_example.sigmf-data and iq_example.sigmf-meta , located in the

 _examples/plot_iq folder of specpipe repository. Once the files are uploaded, the spectrogram is generated for

 further analysis and processing, as illustrated in Figure 9.

 16

 Figure 9. IQEngine is a web-based application to process, visualize, and analyze spectrum data.

 6. Conclusion
 In this section we will cover SpecPipe’s accomplishments as well as future areas of improvement for this project.

 A. Results

 Holistically, SpecPipe has achieved many of our initial design goals which center on making radio spectrum data

 accessible for collection and analysis in many different environments. Accessibility has been a primary driver of

 multiple key pillars in our project, with our open-source repository, extensive documentation, and diverse set of

 examples allowing beginner level developers, students, class projects, and other organizations to easily stand up a

 comprehensive system for handling spectrum data. It takes 4 commands to start a SpecPipe edge device, 1 command

 to start a SpecPipe server, and 1 import statement in a Python script to access SpecPipe’s Python SDK. In our initial

 user testing, we have seen users able to start up a new SpecPipe edge device within 2 minutes.

 SpecPipe’s work on extensibility and customization has also increased the number of users that can benefit from the

 development of the system, while a highly performance and resource efficient solution allows consumers without

 comprehensive infrastructure support to still utilize complex data pipelines.

 B. Future Works

 Despite all of the progress that has been made, there is additional room for improvements in future years. Examples

 of additional work areas may include additional support for third-party integrations, including direct streaming to

 open-source spectrum data platforms such as IQEngine. Additional SDKs for other languages than Python such as

 17

 C++, Rust, and Go Programming Language may also lower barriers to entry for other development ecosystems.

 These are features that we identified as valuable additions, however were not able to include due to time constraints.

 Additionally, while the SpecPipe team has done load-testing, there hasn’t been much usability testing for this

 project. Given that a key goal of this project is to democratize Spectrum data, it is critical to conduct rigorous

 usability studies to evaluate how SpecPipe meets the needs of diverse user groups. For these studies, the research

 question could focus on identifying the challenges users encounter during installation, extension, and use of

 SpecPipe, as well as determining the learnability of the system. The intended participants for this study would

 include hobbyists, academics, principal investigators, and small research teams who do not have a large engineering

 team at their disposal. Qualitative methods such as interviews and direct observations, along with quantitative

 methods like task completion time and error rates can be used to gather comprehensive insights into user

 experiences across these diverse groups. By understanding these challenges, we can tailor future enhancements to

 better serve our users' needs. While there is more to be accomplished in the future, this work lays the foundation for

 future contributions, innovations, and open source development

 7. References
 [1] Rajendran, Sreeraj, et al. "Electrosense: Open and big spectrum data." IEEE Communications Magazine 56.1

 (2017): 210-217.

 [2] Calvo-Palomino, Roberto, et al. "Electrosense+: Crowdsourcing radio spectrum decoding using IoT receivers."

 Computer Networks 174 (2020): 107231.

 [3] Sadiku, Mathew NO, and Cajetan M. Akujuobi. "Software-defined radio: a brief overview." Ieee Potentials 23.4

 (2004): 14-15.

 [4] Shvachko, Konstantin, et al. "The hadoop distributed file system." 2010 IEEE 26th symposium on mass storage

 systems and technologies (MSST). Ieee, 2010.

 [5] Zaharia, Matei, et al. "Apache spark: a unified engine for big data processing." Communications of the ACM

 59.11 (2016): 56-65.

 [6] Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A distributed messaging system for log processing."

 Proceedings of the NetDB. Vol. 11. No. 2011. 2011.

 [7] Elasticsearch GitHub: elastic/elasticsearch-labs: Notebooks & Example Apps for Search & AI Applications with

 Elasticsearch (github.com)

 [8] Rabenstein, B., & Volz, J. (2015). Prometheus: A Next-Generation Monitoring System (Talk). Dublin: USENIX

 Association.

 [9] Z. Jiang, Victor Li et al. “SpecPipe: A scalable cloud-based AI/ML-facilitating data pipeline for spectrum” May

 2023. https://ml4wireless.github.io/adsb-nats/assets/files/paper-3a780e70dcd5731c5c213f8b1a20a505.pdf

 [10] Zheleva, Mariya Zhivkova, et al. "Enabling a nationwide radio frequency inventory using the spectrum

 observatory." IEEE Transactions on Mobile Computing 17.2 (2017): 362-375.

 18

https://github.com/elastic/elasticsearch-labs
https://github.com/elastic/elasticsearch-labs
https://ml4wireless.github.io/adsb-nats/assets/files/paper-3a780e70dcd5731c5c213f8b1a20a505.pdf

 [11] Iyer, Anand, et al. "Specnet: Spectrum sensing sans frontieres." Proc. NSDI. 2011.

 [12] Roy, S., et al. "Cityscape: A metro-area spectrum observatory." 2017 26th International Conference on

 Computer Communication and Networks (ICCCN). IEEE, 2017.

 [13] IQEngine website. https://iqengine.org/

 19

 8. Appendix
 A. API Specification

 Method Request URL Sample Request
 Body

 Response Schema
 (Status code 200)

 Description

 GET /fm/devices/{devicename
 }

 N/A {
 "device": {
 "register_ts": 0,
 "specpipe_version":

 "string",
 "name": "string",
 "sample_rate": "string",
 "resample_rate":

 "string",
 "freq": "string",
 "longitude": 0,
 "latitude": 0

 }
 }

 Read FM device
 configuration

 PUT /fm/devices/{devicename
 }

 {
 "freq": "string",
 "sample_rate":

 "string",
 "resample_rate":

 "string"
 }

 {
 "device": {
 "register_ts": 0,
 "specpipe_version":

 "string",
 "name": "string",
 "sample_rate": "string",
 "resample_rate":

 "string",
 "freq": "string",
 "longitude": 0,
 "latitude": 0

 }
 }

 Update FM
 device

 GET /fm/devices N/A {
 "devices": [
 {
 "register_ts": 0,
 "specpipe_version":

 "string",
 "name": "string",
 "sample_rate": "string",
 "resample_rate":

 "string",
 "freq": "string",
 "longitude": 0,
 "latitude": 0

 }
]

 List FM devices

 20

 }

 GET /iq/devices/{devicename} N/A {
 "device": {
 "register_ts": 0,
 "specpipe_version":

 "string",
 "name": "string",
 "sample_rate": "string",
 "freq": "string",
 "longitude": 0,
 "latitude": 0,
 "forward": true

 }
 }

 Read IQ device
 configuration

 PUT /iq/devices/{devicename} {
 "freq": "string",
 "sample_rate":

 "string"
 }

 {
 "device": {
 "register_ts": 0,
 "specpipe_version":

 "string",
 "name": "string",
 "sample_rate": "string",
 "freq": "string",
 "longitude": 0,
 "latitude": 0,
 "forward": true

 }
 }

 Update IQ device

 GET /iq/devices N/A {
 "devices": [
 {
 "register_ts": 0,
 "specpipe_version":

 "string",
 "name": "string",
 "sample_rate": "string",
 "freq": "string",
 "longitude": 0,
 "latitude": 0,
 "forward": true

 }
]

 }

 List IQ devices

 21

 B. Software Bill of Materials

 Versions enumerated in following appendix sections:

 Software Material Description

 Go Primary language for SpecPipe edge node and server controller
 software

 Python Primary language for SpecPipe auto-generated API utilities and
 example projects

 Docker Utility to containerize SpecPipe edge and server nodes across
 platforms

 Grafana Dashboard customization software to support SpecPipe’s monitoring
 tools

 Prometheus Time-series database used to support reporting, storage, and
 monitoring of quantitative metrics

 Docusaurus Framework for deploying SpecPipe’s documentation site

 NATS Messaging system for handling large-scale data applications

 dump1090 Utility to process and decode aircraft ADS-B data

 librtlsdr Interface for interacting with software defined radios

 FastAPI Web server to support interfacing with examples and demo
 applications

 SpeechRecognition Python library for running local speech-to-text models

 Next.js React framework for server side rendering of demo applications

 React Library for generating HTML outputs based on client application
 needs

 Tailwind CSS Utility for stylization of React pages in our demo applications

 TypeScript Utility for type checking and static analysis of our frontend demo
 applications

 22

 C. Exact Software Requirements

 SpecPipe Go Packages
 Go 1.2.0
 github.com/ThreeDotsLabs/watermill v1.2.0
 github.com/ThreeDotsLabs/watermill-nats/v2 v2.0.2
 github.com/getkin/kin-openapi v0.120.0
 github.com/gin-contrib/cors v1.4.0
 github.com/gin-gonic/gin v1.9.1
 github.com/nats-io/nats.go v1.31.0
 github.com/oapi-codegen/runtime v1.0.0
 github.com/sirupsen/logrus v1.9.3
 github.com/spf13/cobra v1.8.0
 github.com/spf13/viper v1.17.0
 google.golang.org/grpc v1.61.1
 google.golang.org/protobuf v1.32.0
 github.com/apapsch/go-jsonmerge/v2 v2.0.0 // indirect
 github.com/bytedance/sonic v1.10.0-rc3 // indirect
 github.com/chenzhuoyu/base64x v0.0.0-20230717121745-296ad89f973d // indirect
 github.com/chenzhuoyu/iasm v0.9.0 // indirect
 github.com/fsnotify/fsnotify v1.6.0 // indirect
 github.com/gabriel-vasile/mimetype v1.4.2 // indirect
 github.com/gin-contrib/sse v0.1.0 // indirect
 github.com/go-openapi/jsonpointer v0.19.6 // indirect
 github.com/go-openapi/swag v0.22.4 // indirect
 github.com/go-playground/locales v0.14.1 // indirect
 github.com/go-playground/universal-translator v0.18.1 // indirect
 github.com/go-playground/validator/v10 v10.14.1 // indirect
 github.com/goccy/go-json v0.10.2 // indirect
 github.com/golang/protobuf v1.5.3 // indirect
 github.com/google/uuid v1.4.0 // indirect
 github.com/hashicorp/hcl v1.0.0 // indirect
 github.com/inconshreveable/mousetrap v1.1.0 // indirect
 github.com/invopop/yaml v0.2.0 // indirect
 github.com/josharian/intern v1.0.0 // indirect
 github.com/json-iterator/go v1.1.12 // indirect
 github.com/klauspost/compress v1.17.1 // indirect
 github.com/klauspost/cpuid/v2 v2.2.5 // indirect
 github.com/leodido/go-urn v1.2.4 // indirect
 github.com/lithammer/shortuuid/v3 v3.0.7 // indirect
 github.com/magiconair/properties v1.8.7 // indirect
 github.com/mailru/easyjson v0.7.7 // indirect
 github.com/mattn/go-isatty v0.0.19 // indirect

 23

 github.com/mitchellh/mapstructure v1.5.0 // indirect
 github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect
 github.com/modern-go/reflect2 v1.0.2 // indirect
 github.com/mohae/deepcopy v0.0.0-20170929034955-c48cc78d4826 // indirect
 github.com/nats-io/nkeys v0.4.6 // indirect
 github.com/nats-io/nuid v1.0.1 // indirect
 github.com/oklog/ulid v1.3.1 // indirect
 github.com/pelletier/go-toml/v2 v2.1.0 // indirect
 github.com/perimeterx/marshmallow v1.1.5 // indirect
 github.com/pkg/errors v0.9.1 // indirect
 github.com/sagikazarmark/locafero v0.3.0 // indirect
 github.com/sagikazarmark/slog-shim v0.1.0 // indirect
 github.com/sourcegraph/conc v0.3.0 // indirect
 github.com/spf13/afero v1.10.0 // indirect
 github.com/spf13/cast v1.5.1 // indirect
 github.com/spf13/pflag v1.0.5 // indirect
 github.com/subosito/gotenv v1.6.0 // indirect
 github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
 github.com/ugorji/go/codec v1.2.11 // indirect
 go.uber.org/atomic v1.9.0 // indirect
 go.uber.org/multierr v1.9.0 // indirect
 golang.org/x/arch v0.4.0 // indirect
 golang.org/x/crypto v0.18.0 // indirect
 golang.org/x/exp v0.0.0-20230905200255-921286631fa9 // indirect
 golang.org/x/net v0.20.0 // indirect
 golang.org/x/sys v0.16.0 // indirect
 golang.org/x/text v0.14.0 // indirect
 google.golang.org/genproto/googleapis/rpc v0.0.0-20240205150955-31a09d347014
 gopkg.in/ini.v1 v1.67.0 // indirect
 gopkg.in/yaml.v3 v3.0.1 // indirect
 github.com/ThreeDotsLabs/watermill v1.2.0
 github.com/ThreeDotsLabs/watermill-nats/v2 v2.0.2
 github.com/nats-io/nats.go v1.31.0
 github.com/google/uuid v1.3.1 // indirect
 github.com/klauspost/compress v1.17.1 // indirect
 github.com/lithammer/shortuuid/v3 v3.0.7 // indirect
 github.com/nats-io/nkeys v0.4.6 // indirect
 github.com/nats-io/nuid v1.0.1 // indirect
 github.com/oklog/ulid v1.3.1 // indirect
 github.com/pkg/errors v0.9.1 // indirect
 golang.org/x/crypto v0.14.0 // indirect
 golang.org/x/sys v0.13.0 // indirect
 github.com/gordonklaus/portaudio v0.0.0-20230709114228-aafa478834f5

 24

 External Docker Images
 grafana/grafana:9.3.6
 Nats:2.10
 prom/prometheus:v2.45.0

 Demo Python Packages
 annotated-types==0.6.0
 anyio==4.3.0
 certifi==2024.2.2
 cffi==1.16.0
 charset-normalizer==3.3.2
 click==8.1.7
 fastapi==0.110.1
 h11==0.14.0
 idna==3.6
 nats-py==2.7.2
 pocketsphinx==5.0.3
 pycparser==2.22
 pydantic==2.6.4
 pydantic_core==2.16.3
 requests==2.31.0
 sniffio==1.3.1
 sounddevice==0.4.6
 SpeechRecognition==3.10.3
 starlette==0.37.2
 typing_extensions==4.11.0
 urllib3==2.2.1
 uvicorn==0.29.0
 websockets==12.0
 contourpy==1.2.0
 cycler==0.12.1
 fonttools==4.44.3
 importlib-resources==6.1.1
 kiwisolver==1.4.5
 matplotlib==3.8.2
 nats-py==2.6.0
 numpy==1.26.2
 packaging==23.2
 Pillow==10.1.0
 pyparsing==3.1.1
 python-dateutil==2.8.2
 six==1.16.0
 zipp==3.17.0

 25

 annotated-types==0.6.0
 anyio==4.3.0
 certifi==2024.2.2
 charset-normalizer==3.3.2
 click==8.1.7
 fastapi==0.110.1
 h11==0.14.0
 idna==3.6
 nats-py==2.7.2
 pydantic==2.6.4
 pydantic_core==2.16.3
 requests==2.31.0
 sniffio==1.3.1
 SpeechRecognition==3.10.3
 starlette==0.37.2
 typing_extensions==4.11.0
 urllib3==2.2.1
 uvicorn==0.29.0
 websockets==12.0
 pytz==2024.1

 Frontend Demo Dependencies
 "node": ">=18.17.0",
 "packageManager": "yarn@1.22.19",
 "@emotion/react": "^11.11.4",
 "@emotion/styled": "^11.11.0",
 "@headlessui/react": "^1.7.18",
 "@heroicons/react": "^2.1.1",
 "@mui/icons-material": "^5.15.12",
 "@mui/material": "^5.15.12",
 "@next/bundle-analyzer": "^14.0.3",
 "@radix-ui/react-accordion": "^1.1.2",
 "@radix-ui/react-checkbox": "^1.0.4",
 "@radix-ui/react-dialog": "^1.0.5",
 "@radix-ui/react-dropdown-menu": "^2.0.6",
 "@radix-ui/react-form": "^0.0.3",
 "@radix-ui/react-label": "^2.0.2",
 "@radix-ui/react-popover": "^1.0.7",
 "@radix-ui/react-radio-group": "^1.1.3",
 "@radix-ui/react-scroll-area": "^1.0.5",
 "@radix-ui/react-select": "2.0.0",
 "@radix-ui/react-slider": "^1.1.2",
 "@radix-ui/react-switch": "^1.0.3",
 "@radix-ui/react-tabs": "^1.0.4",

 26

 "@radix-ui/react-toggle-group": "^1.0.4",
 "@radix-ui/react-tooltip": "^1.0.7",
 "@semantic-release/changelog": "^6.0.3",
 "@semantic-release/commit-analyzer": "^11.1.0",
 "@semantic-release/git": "^10.0.1",
 "@semantic-release/github": "^9.2.3",
 "@semantic-release/npm": "^11.0.1",
 "@semantic-release/release-notes-generator": "^12.1.0",
 "@t3-oss/env-nextjs": "^0.7.1",
 "@trivago/prettier-plugin-sort-imports": "^4.3.0",
 "@vercel/otel": "^0.3.0",
 "axios": "^1.6.7",
 "class-variance-authority": "^0.7.0",
 "cors": "^2.8.5",
 "dotenv": "^16.4.5",
 "express": "^4.18.3",
 "lodash": "^4.17.21",
 "mongoose": "^8.2.1",
 "nats": "^2.21.0",
 "nats.ws": "^1.22.0",
 "next": "^14.1.4",
 "next-compose-plugins": "^2.2.1",
 "nodemon": "^3.1.0",
 "react": "^18.2.0",
 "react-dom": "^18.2.0",
 "react-toastify": "^10.0.4",
 "stream": "^0.0.2",
 "tailwind-merge": "^2.0.0",
 "yarn": "^1.22.21",
 "zod": "^3.22.4",
 "@babel/core": "^7.23.3",
 "@babel/plugin-syntax-flow": "^7.23.3",
 "@babel/plugin-transform-optional-chaining": "^7.23.4",
 "@babel/plugin-transform-react-jsx": "^7.23.4",
 "@jest/globals": "^29.7.0",
 "@opentelemetry/api": "1.7.0",
 "@opentelemetry/resources": "1.18.1",
 "@opentelemetry/sdk-node": "0.45.1",
 "@opentelemetry/sdk-trace-node": "1.18.1",
 "@opentelemetry/semantic-conventions": "1.18.1",
 "@playwright/test": "^1.40.0",
 "@storybook/addon-essentials": "^7.5.3",
 "@storybook/addon-interactions": "^7.5.3",
 "@storybook/addon-links": "^7.5.3",

 27

 "@storybook/blocks": "^7.5.3",
 "@storybook/nextjs": "^7.5.3",
 "@storybook/react": "^7.5.3",
 "@storybook/test-runner": "^0.15.2",
 "@storybook/testing-library": "^0.2.2",
 "@testing-library/jest-dom": "^6.1.4",
 "@testing-library/react": "^14.1.2",
 "@total-typescript/ts-reset": "^0.5.1",
 "@types/jest": "^29.5.10",
 "@types/node": "^20.10.0",
 "@types/react": "^18.2.38",
 "@types/react-dom": "^18.2.17",
 "@typescript-eslint/eslint-plugin": "^6.12.0",
 "@typescript-eslint/parser": "^6.12.0",
 "all-contributors-cli": "^6.26.1",
 "autoprefixer": "^10.4.18",
 "cross-env": "^7.0.3",
 "eslint": "8.54.0",
 "eslint-config-next": "14.0.3",
 "eslint-config-prettier": "^9.0.0",
 "eslint-config-react-app": "^7.0.1",
 "eslint-plugin-import": "^2.29.0",
 "eslint-plugin-react": "7.33.2",
 "eslint-plugin-storybook": "^0.6.15",
 "eslint-plugin-tailwindcss": "^3.13.0",
 "fetch-mock": "^9.11.0",
 "gzip-size": "6",
 "jest": "^29.7.0",
 "jest-environment-jsdom": "^29.7.0",
 "mkdirp": "^3.0.1",
 "npm-only-allow": "^1.2.6",
 "patch-package": "^8.0.0",
 "postcss": "^8.4.35",
 "postinstall-postinstall": "^2.1.0",
 "prettier": "3.0.3",
 "prettier-plugin-tailwindcss": "^0.5.7",
 "semantic-release": "^22.0.8",
 "storybook": "^7.5.3",
 "tailwindcss": "^3.4.1",
 "ts-jest": "^29.1.1",
 "tsc": "^2.0.4",
 "typescript": "5.3.2",
 "webpack": "5.89.0"

 28

