SpecPipe: Democratizing Access to Spectrum Data

Project 85

Authors: Hao-Ming Hsu, Omair Alam, Will Almy, Alice Lee

Contents

Contents 3
Executive Summary 4
1. Introduction 4
A. Problems and OPPOTTUNILIES.cccueeieeiieierie et eie ettt et et e st e st e bt e sbee bt e ste e bt ebeeseenseenseenseenne 4

B. Proposed Solution: SPEeCPIPE........c.eeiieiiiiiiiiiieciesiesteste sttt ettt ettt et enseenseenseenns 5

2. Related Works 5
A. Previous Generation 0f SPECPIPE.....cc.viviiiiiiiiieiiciieieeie ettt re e e b s taesebestbeseneseaesanens 5

S 2R 23 (o3 (0113 s SO US SRR 5

C. ELECITOSEIISE T..ueiiieietet ettt ettt ettt b et e bbbt et e e st e eb e et et e e bt ebe e s et e ebeeaeeneenaene 6

D. Limitations of Previous WOTKS.ccoiiiiiiiiiiierereeeet ettt b et nee s 6

3. Design Goals 7
g N1 o3 1 1 2 PSRRI 7

Bl EXEENSIDILILY ... eeutietieiieiieie ettt ettt ettt et et e e bt et e e teeseesteesbesaeenbesse e b e esa e b e et b enseesaenbeessenbeesaesseeneesaeenaenreensens 7

(O Tt E:1 03151 2O PO USPRSRRRRN 8

4. Architecture 8
AL CloUd ATCRIEECIUTE. ...ttt ettt ettt ettt e e et s et e b e sbeest e sesbeeseeneeeesseeneeneeneesees 11

B. EdZe NOAE ATCHILECIUIE.......ccuviiiiieieecieeeiee et steeseeetee et e e stteesebeeseveessseeseseessseessseassseeenseeensseesses 11

C. Software Development Kit...........ccuiocuiiiiiiiiie ettt etee et e sv e e saveesveeseveessaeeensaeenns 11

5. Deliverables 12
A. Monitoring DashbOard.............ecveriiiiiieriieiieiieeeie ettt e et e seaesraessaessaesseensees 14

Bl SPEECH 10 tEXL..uiiviiiieiiieiieiieiteit ettt ettt ettt e e e et e et e e bt e b e et e esbe e beesbeesbeerbearbeanbeasbeasbeesbeenrearaeans 15

C. CONIOILET PIANEC......cceiiiiiieciie ettt ee et e ettt e st e e st e e s sbeessbaesssaeessaeesaeesseensseessseesssesassennns 16

D. IQENZINE INEEGTALION.eeutieitieieeteeie ettt ettt ettt ettt et e et e et e et e e ateeabesabesabesneeentesatesasesnnesneeeneas 16

6. Conclusion 17
AL RESUIES. ..t h bbbttt h bt et h bbbt bbbt ettt ettt ebe bt ebes 17

Bl FUTUIE WOTKS. ...ttt h et b et e h et e a et at e bt e et e s bt e et e s bt es b e bt entenbeeneeneeenes 17

7. References 18
8. Appendix 19
AL APT SPECITICALION. ...c.uiiiiiitieiiieciieeiester e te st esttestesaesteesteesteesteesssesseessaesssasssessseseessaesssesssesseesssesees 19

B. Software Bill of Materials........c..coiiiiiiiiiiiiieieee ettt st st 21

C. Exact Software ReqUITEIMENTS.cctiitiiiiiiieriieieerie ettt ettt ettt ettt et e et e beebeeteenteeneeenneens 22
SPECPIPe GO PaCKAZES.....ccvieiieiieiieeit ettt st sttt e s teesaeesseesneesseesseens 22
External DOCKEr IMagES.......ccoieruieriiiiieiiierieteteitese ettt ettt te e te e se e seesaesaesseessaenseensaensens 24

Demo Python PacKkages........c.ccviviiiriiiiieniieiieieietere ettt eere et e e esbesebestbeseaesaaesenesenessnesenas 24
Frontend Demo DePendenCies.........cc.uieruiiirieeiieeiieerieeeteeeteesreeesveeesveeeteeessaeessseessseesssessssessssenans 25

Executive Summary

In the digital landscape, the radio spectrum serves as the backbone for a plethora of technologies, including WiFi
and 5G. However, the potential for individual exploration and scientific analysis in this domain is hampered by the
lack of accessible, scalable, and customizable systems for users to access, analyze and contribute to spectrum data.
Recognizing these challenges and opportunities, this paper introduces SpecPipe: an open-source modern, scalable
AI/ML-facilitating data pipeline that empowers users to engage with radio data using minimal hardware and
configuration requirements. Through a detailed comparison with related works, we demonstrate SpecPipe’s
advancements in accessibility, extensibility, and scalability over previous efforts in this field. We then elaborate on
the architecture of SpecPipe that meets the aforementioned goals and enables users to implement their applications
via Software Development Toolkits (SDKs) aimed at black-boxing the core system. We outline tangible results
including building the SpecPipe framework, SpecPipe Python SDKs, Grafana visualizations for load monitoring,
and an extensive documentation website. Finally, we propose directions for future work to expand the capabilities of

SpecPipe and foster a wider community of contributors and users.

1. Introduction

Radio spectrum powers everything around us, from WiFi, 5G, GPS, and airplane navigation data to the common FM
radio found in cars. Having a system that can empower engineers, scientists, and hobbyists to access, analyze, and
contribute to this data through their own radios is of paramount importance to scientific growth and individual

exploration. The link to our GitHub repositories can be found at: https:/github.com/ml4wireless/specpipe,

https://github.com/ml4wireless/specpipe-sdk-py, and https://github.com/ml4wireless/specpipe-demo.

A. Problems and Opportunities

Creating a system that can allow users to meet the aforementioned goals is a complex endeavor due to the diversity

of signal types in the spectrum as well as the complications in dealing with data of this magnitude.

Radio waves operate within a subset of the electromagnetic wavelengths, typically occupying frequencies between 3
kHz to 300 GHz. Various signal types subdivide across many non-overlapping bands within this range; for example,
FM tends to operate between 88 — 108 MHz. These signals not only vary in their signature and the bands they use,
but also in the geographic locations they are emitted from. Additionally, they require different algorithms to process
and decode them. Besides the complication in signal processing, the sheer volume of spectrum data being produced
every second poses a data engineering challenge, up to multiple Gigabytes per minute. Users accessing both raw and
processed spectrum data require near real-time updates from receivers across the world, so the system needs to have

high bandwidth, low latency, and must guarantee data integrity.

https://github.com/ml4wireless/specpipe
https://github.com/ml4wireless/specpipe-sdk-py
https://github.com/ml4wireless/specpipe-demo

B. Proposed Solution: SpecPipe

To resolve these issues, we have developed SpecPipe: a modern, scalable AI/ML-facilitating data pipeline for
spectrum. Specifically, we have focused on the goals of usability, customizability as well as ease of machine
learning integrations and monitoring. We have accomplished these goals by building SpecPipe as an open-source
project free for people to access and use, with easy-to-follow documentation, and a plethora of startup examples that
allow users to understand our framework interactively. This platform’s core values of accessibility, extensibility, and
scalability ensure that individual users can start to work with radio data with inexpensive hardware, minimal

configuration, and easy onboarding docs.

2. Related Works

Several research endeavors have taken place to enable public access to spectrum data. Zheleva et al. developed an
end-to-end system, Spectrum Observatory [10], to measure and characterize spectrum data. Building on top of
Spectrum Observatory, Roy, S. designed CityScape [12], which is a metro-scale observatory that measures
long-duration IQ data. Iyer et al. presented SpecNet [11] which enables collection and measurement of real-time
spectrum. The radio frequency community has also developed an open-sourced web tool, IQEngine [13], for

analyzing, processing, and sharing radio frequency data.

In the following sections, we perform a literature review with the most related works, including the previous
generation of SpecPipe [9], Electrosense [1], Electrosense+ [2]. The overall comparison of the works is shown in

Table 1.

A. Previous Generation of SpecPipe

Jiang et al. proposed the first version of SpecPipe, which is an end-to-end data pipeline for spectrum data. They
utilized the pipeline to develop a showcase website for interacting with the airplane tracker application. This work
builds upon several existing approaches in the areas of data pipeline design and spectrum sensing. The client
program receives and processes the raw ADS-B data from airplanes, followed by the annotator module to enrich the
data with additional information. With the annotated information, Elasticsearch [7], a distributed search engine, not
only stores but also searches and analyzes the data. Finally, the backend web server fetches annotated ADS-B data
from Elasticsearch and serves it to the front end. Besides the system and the showcase website, they provided

documentation for deploying the system and a monitoring system health dashboard with Prometheus [8].

B. Electrosense

Rajendran et al. proposed a centralized system architecture, Electrosense, which facilitated the accessibility of radio
data. Their goal was to create a reliable and efficient environment for the public to utilize spectrum data while
addressing potential security and privacy concerns. They accomplished this by crowdsourcing and utilizing low-cost

sensors based on software-defined radios (SDRs) [3] and Raspberry Pis, measuring spectrum data in the range of 20

MHz to 6 GHz. The main infrastructure that controls data flow is a Message Queue Telemetry Transport (MQTT).
The distributed system backend is composed of an ingestion layer, a speed layer, and a serving layer. The speed
layer uses Apache Kafka [6], a message queuing system, as a buffer for the incoming data, preventing data loss.
There are two different data pipelines following the ingestion layer which are the speed and serving layers. The
batch layer employs the Hadoop Distributed File System (HDFS) [4] and Apache Spark [5] to perform nearly
real-time parallel processing. Finally, the serving layer provides an open API for users to easily access the processed

data.

By combining all the components, they successfully monitored spectrum data using low-cost sensors with a

centralized backend system.

C. Electrosense +

Building on top of Electrosense, Calvo-Palomino et al. developed Electrosense+, which also allows real-time
spectrum data decoding. Besides the general decoding purpose, they also added a peer-to-peer communication
feature to the architecture. With this direct pipeline between users and sensors, they increased the throughput for
scalable data decoding. In addition to the peer-to-peer channel, they provided users incentives by developing a token
reward system, where users earn tokens whenever their sensors are online and being used. Security is another
important topic mentioned in their work. Since users do not receive raw spectrum data, they added a privacy layer

on top of the decoding process to prevent malicious data leakage.

D. Limitations of Previous Works

The aforementioned works addressed the issue of giving public access to spectrum data, still, there are some
limitations of the mentioned solutions. For example, the documentation and guidelines provided by the authors are
limited, such that they still leave a high barrier of entry for the users. Moreover, the architectures as designed are
unable to be customized. In other words, the data format that the system is receiving is not able to be modified in
real time. Another limitation of Electrosense and Electrosense+ is that the system design lacks a health check
component. Therefore, potential issues or failures within their systems may be overlooked, leading to increased
downtime. Although the previous generation of SpecPipe has a health check component, the provided information
on the dashboard is still limited. For example, it does not show the geolocation, data rate, and registration time of

each device.

Due to these intricacies, the prior generation of SpecPipe, Electrosense, and Electrosense+ lack a myriad of key
features including usability and flexibility that have prevented their mass adoption by end users. Created to fulfill
specific needs as mentioned above, they lack extensibility and observability. Parsing through the user manuals for
these systems is time-consuming and tedious, making development difficult and error-prone. These limitations
prevent a general adoption of said technologies to less technical or resourceful audiences, and therefore, limit the

ability of users to be able to use and contribute to spectrum data.

First generation of SpecPipe
—+ . .
Electrosense [1] Electrosense+ [2] SpecPipe [9] (This work)

Message broker MQTT MQTT NATS NATS

Peer-to-peer No Yes No Yes
communication

Sys“"?’ he;alth No No Grafana Dashboard | Grafana Dashboard

monitoring

Extensibility Low Low Low High
Barrier to entry High High Medium Low
Real-time data Yes Yes No Yes

support
Table 1. Comparison of the works
3. Design Goals

In this section, we focus on mainly three aspects of the system, accessibility, extensibility, and scalability.

A. Accessibility

SpecPipe is designed for simple, rapid deployment on any platform. It provides containerized solutions using
Docker that allow for one-click deployment on various infrastructure environments and platforms. Comprehensive
documentation and hands-on examples guide users through a wide range of use cases ranging from basic to
advanced. The documentation covers topics such as connecting data sources, configuring pipelines, inferencing with
ML models, and generating visual results. This enables users across skill levels to quickly get up and running with

their desired spectrum analysis tasks.

B. Extensibility

SpecPipe is designed as a highly modular and flexible framework so users can easily develop custom plugins with
any technology stack. It is deeply integrated with the open-source software ecosystem and provides out-of-the-box
support for leading open source technologies. For example, it uses NATS JetStream for scalable streaming data
ingestion. Apache Spark integrates natively for distributed big data processing and analytics. gRPC powers
high-performance communication between components. SpecPipe also offers deep integration with popular machine
learning frameworks like TensorFlow and PyTorch for custom machine learning (ML) model development and

deployment.

The modular architecture makes it simple to extend SpecPipe by developing connections to new data sources,
adding additional processing nodes, or implementing custom ML algorithms. Developers can leverage their
preferred languages and frameworks to extend functionality through language-agnostic APIs. SpecPipe handles the
underlying orchestration and deployment so users can focus on writing their own custom logic to suit their specific
needs. The extensive open-source integrations also allow users to tap into rich ecosystems of analytics, data science,

statistics, and ML tools.

C. Scalability

SpecPipe is optimized for scalability from the start. It can easily scale to thousands of sensor nodes with minimal
effort as a result of its distributed architecture. Horizontal scaling is supported out of the box by adding new pipeline
instances, while auto-scaling capabilities dynamically allocate resources based on load. SpecPipe maintains a small
memory footprint even at a massive scale to minimize computing and energy costs. One way it achieves this is by
leveraging Apache Spark for distributed processing, meaning petabyte-scale datasets can be analyzed across clusters

while individual nodes operate efficiently.

SpecPipe also offers fine-grained tuning of scalability by allowing different pipeline stages to scale independently.
Additional ingestion capacity can be added to handle high data volumes from sensors, while the distributed
processing layer can scale analysis and ML workloads independently of the ingestion rates. SpecPipe automatically
handles the routing of data across the scale-out architecture. This flexible scaling unlocks new spectrum analysis

scenarios involving vast numbers of IoT sensors or complex analytics.

4. Architecture

SpecPipe is built to transport, store, and organize large amounts of data. The architecture supports many ML and Al
workloads related to Spectrum Data, but does not implement these ML/AI workloads itself. End users do not modify
the code of SpecPipe directly in most cases, but rather implement their own applications using SpecPipe’s flexible

APIs.

Term Description

NATS (Neural Autonomic | NATS is the key pillar that SpecPipe was built upon, handling communication, data,
Transport System) and configuration requests across nodes. NATS is a lightweight and
high-performance messaging system designed for distributed systems, offering

simplicity, reliability, and scalability for cloud-native applications.

Edge Node An edge node is a device (such as a laptop or a Raspberry Pi) that has a

software-defined radio attached to it via USB and is connected to the system. The

Term

Description

radio is listening at a particular frequency that is initially set when the edge device

registers with the system but can be changed dynamically later.

Applications

Applications are software that run on devices connected to the system. An
application can receive spectrum from an edge node, get metadata of edge nodes

(such as sampling rate, geolocation), and update the configuration of an edge node.

Health Check Server

The Health Check Server is an example of an Application that can run on devices
connected to the system. The purpose of the health check system is to check the
health of the nodes.

Controller API

A controller API serves as the interface for managing and orchestrating resources
within SpecPipe, enabling Applications to programmatically interact with and
manipulate the configuration and behavior of the Edge Nodes. SpecPipe currently
supports 3 APIs for both FM devices and 1Q devices, including read device
configurations, update devices, and get all devices. The Open API is listed in

Appendix A.

Table 2. Key Terms for Architecture

The SpecPipe architecture can be understood using the key terms of the architecture (Table 2), the architecture

diagram (Figure 1) and the information paths supported (Table 3).

SpecPipe Architecture

Services

,_7(4) sending edge node metadat.

- ~ Vs ~

Health Check Controller ‘

Server

(6) sending hearbeat

e S

{3) sending updated configuration
(1) sending data packets

- ~ ~\ - ~ 4 ~

|/7

}

N

L

Edge SLR Client SDR Client |sDR client | DR Glient] SDR Client|
Nodes (Edge (Edge (Edge (Edge (Edge
Node) Node) Node) Node) Node)
. y) \ J J
Figure 1. SpecPipe Architecture
Information path Explanation

Data Flow (Line ‘1’
in Figure 1)

Raw IQ and Demodulated radio data is sent from Edge Nodes via NATS to Applications.

Peer to Peer Flow

(Line ‘2’ in Figure 1)

Raw IQ radio data is sent from Edge Nodes to Applications via a socket. This is useful for
sending high bit rate (> 5 mbps) Raw IQ Data since if this data would be sent via NATS,
the system would get bogged down.

Control Flow 1 (Line

‘3’ in Figure 1)

Applications update the configuration of an edge node (such as changing its sampling rate
or frequency) via the Controller API. The Controller API then publishes a message on the
appropriate NATS subject to change that setting for an Edge Node.

Control Flow 2 (Line

‘4’ in Figure 1)

Applications can get edge node metadata (such as their location and sampling rate) via the

Controller API.

Monitoring Flow 2
(Line °5°, 6’ in
Figure 1)

Applications can monitor the health of the Edge Nodes by running the health command.
When this command is issued, NATS sends heartbeat requests to all the Edge Nodes (line
5). Then, the edge nodes respond with a heartbeat (line 6) to the server via NATS.

Table 3. SpecPipe Information Paths

10

APl (3) update edge node configuration
Metadata
\\7 N J management
‘\
(3) request to update
configuration I'e
: Dynamic
) . —
(5) requesting metrics sending edge node metadata configuration
L J
- { A
™,
. Real-time
— (1) sending data packets- data
» subscription
NATS k, J
' A
(5) sending hearbeat request “h Ji

. . i Data
() sending Raw 1Q via Socket_—;) forwarding

Many examples have been created for using the SpecPipe framework
(https:/ml4wireless.github.io/specpipe/examples), two of which (FM and ADS-B) are shown below:

Applications

Receiving demodulated FM signals via

(Edge sending demodulated FM signals »
o h NATS NATS Pull Suoscriber

Nore) MATS subject: specpipe.data fm.dev1

"SDH Client
ID: devt

-| Application:

Speech To
Toxt

Apglication: ADSB
Active Reporter -

‘SDR Client

(Edge Node) s
ID: dev2 NATS subject: specpipe-iq.cata.iq.devi

sending raw 1Q signals ,| NATS RPC!‘?;‘:#?;:WS‘S:):;LS‘;S: via.

A. Cloud Architecture

To support running in a Cloud environment, the entire application stack has been containerized into various Docker
images, bundled together with a Docker Compose manifest for easy deployment of key services. One such image
contains the Controller service or the backend API server that supports interaction with SpecPipe and any number of
edge nodes. Additional images are built to be run on the edge nodes themselves which set up a standardized
interface for data collection across different host environments. A majority of SpecPipe’s application code is written
in Go, a highly performant compiled language, allowing for resource-efficient deployments to Cloud environments
or hosts with low computing power. Lastly, NATS represents the key pillar of SpecPipe’s functionality, handling

communication, data transfer, and forwarding of configuration requests across nodes.

B. Edge Node Architecture

SpecPipe’s scalable infrastructure allows any number of edge nodes to connect and begin collecting data, either for
immediate consumption or recording to long-term storage. The edge container contains multiple utilities for
handling data, including various common decoding methods such as FM and AM radio. Direct streaming of I1Q data
is also supported but may be bandwidth intensive. Additional functionality includes the ability of edge nodes to
directly forward data in a peer-to-peer environment without needing to interface directly with the server; this
supports the separation of concerns at the edge and can support customized decoding or data processing methods

before data is sent over the network.

C. Software Development Kit

With a flexible system to support many workflows on both the client and the server, additional functionality includes
an auto-generated API and client SDK for interacting with SpecPipe’s various systems. These APIs help with

configuration, data consumption, and monitoring from external applications without needing to modify any internal

11

https://ml4wireless.github.io/specpipe/examples

SpecPipe source code. These APIs and SDKs can be used by a wide variety of programming languages and

workflows, ensuring future compatibility with multiple products and technology stacks.

5. Deliverables

Publicly accessible artifacts for SpecPipe include three source code repositories. specpipe itself contains the
components to run the backend infrastructure in the cloud and also includes customizable software for distribution to
edge nodes. There are also six different independent examples shown under the example directory of this
repository. An additional repository, specpipe-sdk-py, contains SpecPipe’s Python SDK which allows developers to
interact with and develop tooling around SpecPipe with their preferred language of choice. The complete software

bill of materials can be found in Appendix B

Documentation has been a key priority in SpecPipe’s development, aligning with our project goals of creating an
accessible solution to users from all backgrounds. The system architecture, as well as onboarding steps, are included
both in our project README files as well as a standalone documentation site hosted within GitHub Pages, as shown
in Figure 2 and Figure 3. The steps to get SpecPipe up and running are presented in a quick and minimal fashion
while also providing additional resources for advanced users looking to customize and extend the system. The

documentation website is developed using Docusaurus.

For many users, the quickest way to understand a software system is to see real world examples of how it can be
used. Therefore, specpipe-demo, covering a variety of different use cases that SpecPipe can help with is presented.
The website is developed using TypeScript using the framework React, specifically Next.js framework. We use
TailwindCSS as the CSS framework so as to streamline and expedite the development process. The details of the

demos are discussed in the following sections A to D.

12

https://github.com/ml4wireless/specpipe
https://github.com/ml4wireless/specpipe-sdk-py
https://github.com/ml4wireless/specpipe-demo

=
T SpecPipe SpecPipe Repo ™ SpecPipe Python SDK Repo & (&

f
Setup

e SpecPipe: A scalable Al/ML-
facilitating data pipeline for spectrum

By: Hao-Ming Hsu, Omair Alam, Will Almy, Alice Lee

In today's interconnected world, radio spectrum signals surround us, yet there exist noticeable limitations in the
data systems created to access, monitor, perform Al experiments, and contribute to this analog data.

To democratize the access and usage of spectrum data, we have built , a distributed Al/ML data
pipeline. This platform's core values of accessibility, extensibility and scalability ensure that individual users can
start to work with radio data with inexpensive hardware, minimal configuration, and a smooth onboarding process.

We have accomplished this goal of improving access to spectrum data by building SpecPipe as an open-source
project free for people to access and use, with easy to follow documentation, and a plethora of startup examples

that allow users to understand our framework interactively.

For more details on the architecture of SpecPipe

Figure 2. SpecPipe documentation website hosted on GitHub pages using Docusauraus framework.

T SpecPipe SpecPipe Repo 2 SpecPipe Python SDKRepo & (&

Introduction " Setup

Setup SpecPipe Edge Device, Server, .o o
Jupsereimi Controller Plane and Dashboards

Architecture 6. Running SpecPipe Edge Device

Note: This guide only applies if you want to setup to send Radio Data as an . If you only want to build &
evice
an application that accesses data, you don't need to have an SDR.
7. Setting up Controller Plane

8. Viewing Graphana Dashbeard

1. Install Dependencies for librtisdr

In order to extract raw data from the SDR hardware, the librtlsdr binaries have to be installed on the host
machine. Before we install these binaries, we need to install gcc, g++, make, cmake and libusb.

For Linux Users

sudo apt-get update
sudo apt-get -y install build-essential cmake libusb-1.0-0-dev

For Mac Users using Apple silicon

Install cmake and libusb via Homebrew.

brew install cmake libusb

Figure 3. SpecPipe documentation website illustrating commands to setup SpecPipe.

13

SpecPipe
An Al Data Pipeline for
Spectrum Data

SpecPipe is a data pipeline for processing and analyzing spectrum data
It is designed to be easy to use and to provide a wide range of features
for processing and analyzing spectrum data

Get started See Demo

® oll
Dynamic Configutaion Software Defined Radio Data Processing
Easily modify data stream configuration Support for a wide range of SDR devices. Real-time data visualization.
& m W)
Dashboard Documentation Health checks
Visualization of monitering metrics Detailed tutorial and guidelines. System heartbeat monitering.
&3 % Q
Simple AI/ML Integration Easy deployment Open source comminity
Out-of-the-box edge inference Containerized applications Fully open source and community driven

Figure 4. SpecPipe demo website landing page.

A. Monitoring Dashboard

In addition to the system itself, we have also developed tooling and workflows for observability in a production
environment, as shown in Figure 5 and Figure 6. A Grafana dashboard template is included with the SpecPipe
source code with various panels to monitor resource usage, data flow, and other key metrics around system health
and performance. Metrics are exposed to Grafana through Prometheus, a time series database that is built with
user-friendly extensibility in mind. After registering an edge device, its information will automatically appear on the

Grafana dashboard, including charts of device geo-locations and online status, all ready to use in our system.

8 General / SpecPipe Dashboard <

~ Device summary
FM device metadata Geolocation
Frequency e I
100500000

100500000 2024

FM Datarate

Name Frequency

des 94700000

Figure 5. Grafana Dashboard of SpecPipe showing the geolocation, metadata, data rate of FM devices as well as the

metadata of IQ devices.

14

88 General / SpecPipe Dashboard <@

~ NATS JetStream - Summary

Storage Used Total Storage Used Memory Used Memory Used Connections

2.61 Gis Os 10

Max Storage Total Memory Total Consumers

70.093% 3.73is 0.000% 712 vis 1

~ NATS JetStream - Stream metrics

Stream data size Stream message count Message Rate (per second)

10000 mps

M \ﬁw l \‘l‘ H"‘l i HH‘IHM \W ‘ i

) sooamps | g AR
e il n‘ 0 I i
o P v B P o | \ ‘
16:10 162 16:30 16:50 16:00 16:10 6:2! 6:3 612 18:50 16 & 16:20 1630 16:40
ecope = specpipe == spacpipeiy = KV_specpipe == specoipe = specpipeiq = KV.specpipe == specoipe

+ NATS JetStream - Consumer metrics

Messages per second (++/-)

50 mps
0mps

50 mps
15:55 16:00 60 6 1620 162t 2 &3 6 1645

Total delivered messages Pending messages Message Acks Pending

440 Ml

Figure 6. Grafana Dashboard showing the system health status of NATS JetStream, including storage used and

consumer metrics.

B. Speech to text

In the speech to text demo, a basic FastAPI web server is employed to retrieve FM data from NATS. This data is
then decoded into .wav chunks, optimized for compatibility with the SpeechRecognition model. The resulting text is
streamed to listeners via websocket communication. Additionally, a demonstration frontend application accompanies
the setup, utilizing websocket reception to display live text in a scrollable text box. We streamed the audio from our
mock server, dev-0-mock, to ensure that the audio contains words. As shown in Figure 7, the corresponding caption

was automatically generated.

Dashboard SpeechtoText Controller IQ Engine

#M Devica

devomock . c!

do you do you know harry callahan
we are just lose diversity one prompt disappear we actually lou

it could delivery because many of the crops we need today

they just because they were granted with other crops and in some case

his crops up to be completely useless to human respected

Figure 7. Speech to text demo of the website. The captions are generated using the speech to text model.

15

C. Controller plane

The controller plane comprises a device selector at the top, defaulting to the mock device, dev-0-mock. Clicking the
volume button adjacent to it initiates audio playback. Below, three sliders adjust frequency, sample rate, and

resample rate. To alter device configuration, adjust the sliders and click the modify button below.

Frequency: 100.5 MHz

Sample Rate: 200 kHz

Resample Rate: 32 kHz

Figure 8. SpecPipe demo website that enables users to modify configuration of registered devices.

D. IQEngine integration

IQEngine is a web-based tool designed for analyzing radio frequency (RF) data, facilitating the processing
as well as sharing of RF data and displaying spectrograms directly within web browsers. We have integrated the 1Q
Engine function into our demo website. Users can initiate analysis by clicking on Local File Pair on the left-hand
side and uploading example data files, namely iq_example.sigmf-data and iq_example.sigmf-meta, located in the
_examples/plot_iq folder of specpipe repository. Once the files are uploaded, the spectrogram is generated for

further analysis and processing, as illustrated in Figure 9.

16

Dashboard SpeechtoText Modify Configuration IQ Engine

IQEngine

[vsetings | y

Zoom Out Level 12 . h . °
Add Annotation.

Toggle Time Cursors

Toggle Freq. Cursors

Magnitude Color Mapping

@
-34.4dB -4.1dB

FIR Filter Taps (3)

[

Display RF Freq
Square Signal
Python Snippet

numpy as np
time

start_t = time.time()

S e: q_example

print("

Figure 9. IQEngine is a web-based application to process, visualize, and analyze spectrum data.

6. Conclusion

In this section we will cover SpecPipe’s accomplishments as well as future areas of improvement for this project.
A. Results

Holistically, SpecPipe has achieved many of our initial design goals which center on making radio spectrum data
accessible for collection and analysis in many different environments. Accessibility has been a primary driver of
multiple key pillars in our project, with our open-source repository, extensive documentation, and diverse set of
examples allowing beginner level developers, students, class projects, and other organizations to easily stand up a
comprehensive system for handling spectrum data. It takes 4 commands to start a SpecPipe edge device, 1 command
to start a SpecPipe server, and 1 import statement in a Python script to access SpecPipe’s Python SDK. In our initial

user testing, we have seen users able to start up a new SpecPipe edge device within 2 minutes.

SpecPipe’s work on extensibility and customization has also increased the number of users that can benefit from the
development of the system, while a highly performance and resource efficient solution allows consumers without

comprehensive infrastructure support to still utilize complex data pipelines.

B. Future Works

Despite all of the progress that has been made, there is additional room for improvements in future years. Examples
of additional work areas may include additional support for third-party integrations, including direct streaming to

open-source spectrum data platforms such as IQEngine. Additional SDKs for other languages than Python such as

17

C++, Rust, and Go Programming Language may also lower barriers to entry for other development ecosystems.

These are features that we identified as valuable additions, however were not able to include due to time constraints.

Additionally, while the SpecPipe team has done load-testing, there hasn’t been much usability testing for this
project. Given that a key goal of this project is to democratize Spectrum data, it is critical to conduct rigorous
usability studies to evaluate how SpecPipe meets the needs of diverse user groups. For these studies, the research
question could focus on identifying the challenges users encounter during installation, extension, and use of
SpecPipe, as well as determining the learnability of the system. The intended participants for this study would
include hobbyists, academics, principal investigators, and small research teams who do not have a large engineering
team at their disposal. Qualitative methods such as interviews and direct observations, along with quantitative
methods like task completion time and error rates can be used to gather comprehensive insights into user
experiences across these diverse groups. By understanding these challenges, we can tailor future enhancements to
better serve our users' needs. While there is more to be accomplished in the future, this work lays the foundation for

future contributions, innovations, and open source development

7. References

[1] Rajendran, Sreeraj, et al. "Electrosense: Open and big spectrum data." IEEE Communications Magazine 56.1
(2017): 210-217.

[2] Calvo-Palomino, Roberto, et al. "Electrosense+: Crowdsourcing radio spectrum decoding using IoT receivers."
Computer Networks 174 (2020): 107231.

[3] Sadiku, Mathew NO, and Cajetan M. Akujuobi. "Software-defined radio: a brief overview." Ieee Potentials 23.4
(2004): 14-15.

[4] Shvachko, Konstantin, et al. "The hadoop distributed file system." 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 2010.

[5] Zaharia, Matei, et al. "Apache spark: a unified engine for big data processing." Communications of the ACM
59.11 (2016): 56-65.

[6] Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A distributed messaging system for log processing."
Proceedings of the NetDB. Vol. 11. No. 2011. 2011.

[7] Elasticsearch GitHub: clastic/elasticsearch-labs: Notebooks & Example Apps for Search & Al Applications with
Elasticsearch (github.com)

[8] Rabenstein, B., & Volz, J. (2015). Prometheus: A Next-Generation Monitoring System (Talk). Dublin: USENIX
Association.

[9] Z. Jiang, Victor Li et al. “SpecPipe: A scalable cloud-based AI/ML-facilitating data pipeline for spectrum” May
2023. https://ml4wireless.github.io/adsb-nats/assets/files/paper-3a780e70dcd5731¢c5¢213t8b1a20a505.pdf

[10] Zheleva, Mariya Zhivkova, et al. "Enabling a nationwide radio frequency inventory using the spectrum

observatory." IEEE Transactions on Mobile Computing 17.2 (2017): 362-375.

18

https://github.com/elastic/elasticsearch-labs
https://github.com/elastic/elasticsearch-labs
https://ml4wireless.github.io/adsb-nats/assets/files/paper-3a780e70dcd5731c5c213f8b1a20a505.pdf

[11] Iyer, Anand, et al. "Specnet: Spectrum sensing sans frontieres." Proc. NSDI. 2011.

[12] Roy, S., et al. "Cityscape: A metro-area spectrum observatory." 2017 26th International Conference on
Computer Communication and Networks (ICCCN). IEEE, 2017.

[13] IQEngine website. https://igengine.org/

19

8. Appendix

A. API Specification

Method

Request URL

Sample Request
Body

Response Schema
(Status code 200)

Description

GET

/fm/devices/{devicename

}

N/A

{

"device": {
"register_ts": 0,
"specpipe_version":

"string",

"name": "string",

"sample rate": "string",

"resample_rate":

"string",

"freq": "string",
"longitude": 0,
"latitude": 0
b
}

Read FM device
configuration

PUT

/fm/devices/{devicename

}

{
"freq": "string",
"sample rate":
"string",

"string"

}

"resample_rate":

"device": {
"register_ts": 0,
"specpipe_version":

"string",
"name": "string",
"sample rate": "string",
"resample_rate":
"string",
"freq": "string",
"longitude": 0,
"latitude": 0
}
}

Update FM
device

GET

/fm/devices

N/A

"devices": [
{
"register_ts": 0,
"specpipe_version":
"string",
"name": "string",
"sample rate": "string",
"resample_rate":
"string",
"freq": "string",
"longitude": 0,
"latitude": O
b
]

List FM devices

20

Read 1Q device
"device": { configuration
"register ts": 0,
"specpipe_version":
"string",
"name": "string",
"sample rate": "string",
"freq": "string",
"longitude": 0,
"latitude": 0,
"forward": true

GET /ig/devices/{devicename} | N/A {

{ { Update IQ device
"freq": "string", "device": {

"sample rate": "register ts": 0,
"string" "specpipe_version":

} "string",

"name": "string",
"sample rate": "string",
"freq": "string",
"longitude": 0,
"latitude": 0,
"forward": true

PUT /ig/devices/{devicename}

N/A { List IQ devices
"devices": [
{
"register_ts": 0,
"specpipe_version":
"string",
"name": "string",
"sample rate": "string",
"freq": "string",
"longitude": 0,
"latitude": 0,
"forward": true

GET /ig/devices

B. Software Bill of Materials

Versions enumerated in following appendix sections:

Software Material | Description

Go Primary language for SpecPipe edge node and server controller
software

Python Primary language for SpecPipe auto-generated API utilities and
example projects

Docker Utility to containerize SpecPipe edge and server nodes across
platforms

Grafana Dashboard customization software to support SpecPipe’s monitoring
tools

Prometheus Time-series database used to support reporting, storage, and
monitoring of quantitative metrics

Docusaurus Framework for deploying SpecPipe’s documentation site

NATS Messaging system for handling large-scale data applications

dump1090 Utility to process and decode aircraft ADS-B data

librtlsdr Interface for interacting with software defined radios

FastAPI Web server to support interfacing with examples and demo
applications

SpeechRecognition | Python library for running local speech-to-text models

Next.js React framework for server side rendering of demo applications

React Library for generating HTML outputs based on client application
needs

Tailwind CSS Utility for stylization of React pages in our demo applications

TypeScript Utility for type checking and static analysis of our frontend demo
applications

22

C. Exact Software Requirements

SpecPipe Go Packages

Go 1.2.0

github.com/ThreeDotsLabs/watermill v1.2.0
github.com/ThreeDotsLabs/watermill-nats/v2 v2.0.2
github.com/getkin/kin-openapi v0.120.0
github.com/gin-contrib/cors v1.4.0
github.com/gin-gonic/gin v1.9.1
github.com/nats-io/nats.go v1.31.0
github.com/oapi-codegen/runtime v1.0.0
github.com/sirupsen/logrus v1.9.3
github.com/spf13/cobra v1.8.0

github.com/spf13/viper v1.17.0

google.golang.org/grpc v1.61.1
google.golang.org/protobuf v1.32.0
github.com/apapsch/go-jsonmerge/v2 v2.0.0 // indirect
github.com/bytedance/sonic v1.10.0-rc3 // indirect
github.com/chenzhuoyu/base64x v0.0.0-20230717121745-296ad89f973d // indirect
github.com/chenzhuoyu/iasm v0.9.0 // indirect
github.com/fsnotify/fsnotify v1.6.0 // indirect
github.com/gabriel-vasile/mimetype v1.4.2 // indirect
github.com/gin-contrib/sse v0.1.0 // indirect
github.com/go-openapi/jsonpointer v0.19.6 // indirect
github.com/go-openapi/swag v0.22.4 // indirect
github.com/go-playground/locales v0.14.1 // indirect
github.com/go-playground/universal-translator v0.18.1 // indirect
github.com/go-playground/validator/v10 v10.14.1 // indirect
github.com/goccy/go-json v0.10.2 // indirect
github.com/golang/protobuf v1.5.3 // indirect
github.com/google/uuid v1.4.0 // indirect
github.com/hashicorp/hcl v1.0.0 // indirect
github.com/inconshreveable/mousetrap v1.1.0 // indirect
github.com/invopop/yaml v0.2.0 // indirect
github.com/josharian/intern v1.0.0 // indirect
github.com/json-iterator/go v1.1.12 // indirect
github.com/klauspost/compress v1.17.1 // indirect
github.com/klauspost/cpuid/v2 v2.2.5 // indirect
github.com/leodido/go-urn v1.2.4 // indirect
github.com/lithammer/shortuuid/v3 v3.0.7 // indirect
github.com/magiconair/properties v1.8.7 // indirect
github.com/mailru/easyjson v0.7.7 // indirect
github.com/mattn/go-isatty v0.0.19 // indirect

23

github.com/mitchellh/mapstructure v1.5.0 // indirect
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect
github.com/modern-go/reflect2 v1.0.2 // indirect
github.com/mohae/deepcopy v0.0.0-20170929034955-c48cc78d4826 // indirect
github.com/nats-io/nkeys v0.4.6 // indirect

github.com/nats-io/nuid v1.0.1 // indirect

github.com/oklog/ulid v1.3.1 // indirect
github.com/pelletier/go-toml/v2 v2.1.0 // indirect
github.com/perimeterx/marshmallow v1.1.5 // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/sagikazarmark/locafero v0.3.0 // indirect
github.com/sagikazarmark/slog-shim v0.1.0 // indirect
github.com/sourcegraph/conc v0.3.0 // indirect
github.com/spf13/afero v1.10.0 // indirect

github.com/spf13/cast v1.5.1 // indirect

github.com/spf13/pflag v1.0.5 // indirect
github.com/subosito/gotenv v1.6.0 // indirect
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
github.com/ugorji/go/codec v1.2.11 // indirect

go.uber.org/atomic v1.9.0 // indirect

go.uber.org/multierr v1.9.0 // indirect

golang.org/x/arch v0.4.0 // indirect

golang.org/x/crypto v0.18.0 // indirect

golang.org/x/exp v0.0.0-20230905200255-921286631fa9 // indirect
golang.org/x/net v0.20.0 // indirect

golang.org/x/sys v0.16.0 // indirect

golang.org/x/text v0.14.0 // indirect
google.golang.org/genproto/googleapis/rpc v0.0.0-20240205150955-31a09d347014
gopkg.in/ini.v1 v1.67.0 // indirect

gopkg.infyaml.v3 v3.0.1 // indirect
github.com/ThreeDotsLabs/watermill v1.2.0
github.com/ThreeDotsLabs/watermill-nats/v2 v2.0.2
github.com/nats-io/nats.go v1.31.0

github.com/google/uuid v1.3.1 // indirect
github.com/klauspost/compress v1.17.1 // indirect
github.com/lithammer/shortuuid/v3 v3.0.7 // indirect
github.com/nats-io/nkeys v0.4.6 // indirect

github.com/nats-io/nuid v1.0.1 // indirect

github.com/oklog/ulid v1.3.1 // indirect

github.com/pkg/errors v0.9.1 // indirect

golang.org/x/crypto v0.14.0 // indirect

golang.org/x/sys v0.13.0 // indirect
github.com/gordonklaus/portaudio v0.0.0-20230709114228-aafa478834f5

24

External Docker Images

grafana/grafana:9.3.6
Nats:2.10
prom/prometheus:v2.45.0

Demo Python Packages

annotated-types==0.6.0
anyio==4.3.0
certifi==2024.2.2
cffi==1.16.0
charset-normalizer==3.3.2
click==8.1.7
fastapi==0.110.1
h11==0.14.0

idna==3.6

nats-py==2.7.2
pocketsphinx==5.0.3
pycparser==2.22
pydantic==2.6.4
pydantic_core==2.16.3
requests==2.31.0
sniffio==1.3.1
sounddevice==0.4.6
SpeechRecognition==3.10.3
starlette==0.37.2
typing_extensions==4.11.0
urllib3==2.2.1
uvicorn==0.29.0
websockets==12.0
contourpy==1.2.0
cycler==0.12.1
fonttools==4.44.3
importlib-resources==6.1.1
kiwisolver==1.4.5
matplotlib==3.8.2
nats-py==2.6.0
numpy==1.26.2
packaging==23.2
Pillow==10.1.0
pyparsing==3.1.1
python-dateutil==2.8.2
six==1.16.0

Zipp==3.17.0

annotated-types==0.6.0
anyio==4.3.0
certifi==2024.2.2
charset-normalizer==3.3.2
click==8.1.7
fastapi==0.110.1
h11==0.14.0

idna==3.6

nats-py==2.7.2
pydantic==2.6.4
pydantic_core==2.16.3
requests==2.31.0
sniffio==1.3.1
SpeechRecognition==3.10.3
starlette==0.37.2
typing_extensions==4.11.0
urllib3==2.2.1
uvicorn==0.29.0
websockets==12.0
pytz==2024.1

Frontend Demo Dependencies

"node": ">=18.17.0",
"packageManager": "yarn@1.22.19",
"@emotion/react": "*1.11.4",
"@emotion/styled": "*1.11.0",
"@headlessui/react": "*.7.18",
"@heroicons/react": "*2.1.1",
"@mui/icons-material": "A5.15.12",
"@mui/material": ""5.15.12",
"@next/bundle-analyzer": "*14.0.3",
"@radix-ui/react-accordion": "*.1.2",
"@radix-ui/react-checkbox": "1.0.4",
"@radix-ui/react-dialog": "*.0.5",
"@radix-ui/react-dropdown-menu": "*2.0.6",
"@radix-ui/react-form"; "*0.0.3",
"@radix-ui/react-label": "*2.0.2",
"@radix-ui/react-popover"; "*1.0.7",
"@radix-ui/react-radio-group": "*1.1.3",
"@radix-ui/react-scroll-area": "*1.0.5",
"@radix-ui/react-select": "2.0.0",
"@radix-ui/react-slider": "*.1.2",
"@radix-ui/react-switch": "*1.0.3",
"@radix-ui/react-tabs": ""1.0.4",

"@radix-ui/react-toggle-group": "*1.0.4",
"@radix-ui/react-tooltip": "*.0.7",
"@semantic-release/changelog": "*6.0.3",
"@semantic-release/commit-analyzer": "*11.1.0",
"@semantic-release/qgit": "10.0.1",
"@semantic-release/github™: "19.2.3",
"@semantic-release/npm": "A11.0.1",
"@semantic-release/release-notes-generator": "A12.1.0",
"@t3-oss/env-nextjs": "10.7.1",
"@trivago/prettier-plugin-sort-imports": "*4.3.0",
"@vercel/otel": "0.3.0",

"axios": "".6.7",

"class-variance-authority": "*0.7.0",

"cors": ""2.8.5",

"dotenv": "16.4.5",

"express": ""4.18.3",

"lodash": ""4.17.21",

"mongoose": "8.2.1",

"nats": "72.21.0",
"nats.ws": "*.22.0",
"next": ""M4.1.4",

"next-compose-plugins": "*2.2.1",

"nodemon"; "*3.1.0",

"react": "718.2.0",

"react-dom": "*8.2.0",

"react-toastify": "*10.0.4",

"stream": "*0.0.2",

"tailwind-merge": "22.0.0",

"yarn": "AM.22.21",

"zod": "3.22.4",

"@babel/core": "77.23.3",
"@babel/plugin-syntax-flow": "A7.23.3",
"@babel/plugin-transform-optional-chaining": "A7.23.4",
"@babel/plugin-transform-react-jsx": "7.23.4",
"@jest/globals": "*29.7.0",
"@opentelemetry/api": "1.7.0",
"@opentelemetry/resources": "1.18.1",
"@opentelemetry/sdk-node": "0.45.1",
"@opentelemetry/sdk-trace-node": "1.18.1",
"@opentelemetry/semantic-conventions": "1.18.1",
"@playwright/test": "A1.40.0",
"@storybook/addon-essentials": "A7.5.3",
"@storybook/addon-interactions": "A7.5.3",
"@storybook/addon-links": "A7.5.3",

27

"@storybook/blocks": "A7.5.3",
"@storybook/nextjs": "A7.5.3",
"@storybook/react": "A7.5.3",
"@storybook/test-runner": "*0.15.2",
"@storybook/testing-library": "10.2.2",
"@testing-library/jest-dom": ""6.1.4",
"@testing-library/react": ""4.1.2",
"@total-typescript/ts-reset": "*0.5.1",
"@typesljest": ""29.5.10",
"@types/node": "720.10.0",
"@types/react": "18.2.38",
"@types/react-dom": "*8.2.17",
"@typescript-eslint/eslint-plugin": "*6.12.0",
"@typescript-eslint/parser": "*6.12.0",
"all-contributors-cli": ""6.26.1",
"autoprefixer": "*0.4.18",
"cross-env": "A7.0.3",

"eslint": "8.54.0",
"eslint-config-next": "14.0.3",
"eslint-config-prettier": "*9.0.0",
"eslint-config-react-app": "7.0.1",
"eslint-plugin-import": "42.29.0",
"eslint-plugin-react": "7.33.2",
"eslint-plugin-storybook": "*0.6.15",
"eslint-plugin-tailwindcss": "*3.13.0",
"fetch-mock": "19.11.0",

"gzip-size": "6",

"jest": "A29.7.0",
"jest-environment-jsdom": "429.7.0",
"mkdirp": "*3.0.1",

"npm-only-allow": "*.2.6",
"patch-package": "*8.0.0",
"postcss"; "*8.4.35",
"postinstall-postinstall": "*2.1.0",
"prettier": "3.0.3",
"prettier-plugin-tailwindcss": "*0.5.7",
"semantic-release": ""22.0.8",
"storybook": "7.5.3",

"tailwindcss": "*3.4.1",

"ts-jest": "A29.1.1",

"tsc": "12.0.4",

"typescript": "5.3.2",

"webpack": "5.89.0"

28

