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 Executive Summary 

 In  the  digital  landscape,  the  radio  spectrum  serves  as  the  backbone  for  a  plethora  of  technologies,  including  WiFi 

 and  5G.  However,  the  potential  for  individual  exploration  and  scientific  analysis  in  this  domain  is  hampered  by  the 

 lack  of  accessible,  scalable,  and  customizable  systems  for  users  to  access,  analyze  and  contribute  to  spectrum  data. 

 Recognizing  these  challenges  and  opportunities,  this  paper  introduces  SpecPipe:  an  open-source  modern,  scalable 

 AI/ML-facilitating  data  pipeline  that  empowers  users  to  engage  with  radio  data  using  minimal  hardware  and 

 configuration  requirements.  Through  a  detailed  comparison  with  related  works,  we  demonstrate  SpecPipe’s 

 advancements  in  accessibility,  extensibility,  and  scalability  over  previous  efforts  in  this  field.  We  then  elaborate  on 

 the  architecture  of  SpecPipe  that  meets  the  aforementioned  goals  and  enables  users  to  implement  their  applications 

 via  Software  Development  Toolkits  (SDKs)  aimed  at  black-boxing  the  core  system.  We  outline  tangible  results 

 including  building  the  SpecPipe  framework,  SpecPipe  Python  SDKs,  Grafana  visualizations  for  load  monitoring, 

 and  an  extensive  documentation  website.  Finally,  we  propose  directions  for  future  work  to  expand  the  capabilities  of 

 SpecPipe and foster a wider community of contributors and users. 

 1. Introduction 
 Radio  spectrum  powers  everything  around  us,  from  WiFi,  5G,  GPS,  and  airplane  navigation  data  to  the  common  FM 

 radio  found  in  cars.  Having  a  system  that  can  empower  engineers,  scientists,  and  hobbyists  to  access,  analyze,  and 

 contribute  to  this  data  through  their  own  radios  is  of  paramount  importance  to  scientific  growth  and  individual 

 exploration.  The  link  to  our  GitHub  repositories  can  be  found  at:  https://github.com/ml4wireless/specpipe  , 

 https://github.com/ml4wireless/specpipe-sdk-py  , and  https://github.com/ml4wireless/specpipe-demo  . 

 A. Problems and Opportunities 

 Creating  a  system  that  can  allow  users  to  meet  the  aforementioned  goals  is  a  complex  endeavor  due  to  the  diversity 

 of signal types in the spectrum as well as the complications in dealing with data of this magnitude. 

 Radio  waves  operate  within  a  subset  of  the  electromagnetic  wavelengths,  typically  occupying  frequencies  between  3 

 kHz  to  300  GHz.  Various  signal  types  subdivide  across  many  non-overlapping  bands  within  this  range;  for  example, 

 FM  tends  to  operate  between  88  –  108  MHz.  These  signals  not  only  vary  in  their  signature  and  the  bands  they  use, 

 but  also  in  the  geographic  locations  they  are  emitted  from.  Additionally,  they  require  different  algorithms  to  process 

 and  decode  them.  Besides  the  complication  in  signal  processing,  the  sheer  volume  of  spectrum  data  being  produced 

 every  second  poses  a  data  engineering  challenge,  up  to  multiple  Gigabytes  per  minute.  Users  accessing  both  raw  and 

 processed  spectrum  data  require  near  real-time  updates  from  receivers  across  the  world,  so  the  system  needs  to  have 

 high bandwidth, low latency, and must guarantee data integrity. 
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 B. Proposed Solution: SpecPipe 

 To  resolve  these  issues,  we  have  developed  SpecPipe:  a  modern,  scalable  AI/ML-facilitating  data  pipeline  for 

 spectrum.  Specifically,  we  have  focused  on  the  goals  of  usability,  customizability  as  well  as  ease  of  machine 

 learning  integrations  and  monitoring.  We  have  accomplished  these  goals  by  building  SpecPipe  as  an  open-source 

 project  free  for  people  to  access  and  use,  with  easy-to-follow  documentation,  and  a  plethora  of  startup  examples  that 

 allow  users  to  understand  our  framework  interactively.  This  platform’s  core  values  of  accessibility,  extensibility,  and 

 scalability  ensure  that  individual  users  can  start  to  work  with  radio  data  with  inexpensive  hardware,  minimal 

 configuration, and easy onboarding docs. 

 2. Related Works 
 Several  research  endeavors  have  taken  place  to  enable  public  access  to  spectrum  data.  Zheleva  et  al.  developed  an 

 end-to-end  system,  Spectrum  Observatory  [10],  to  measure  and  characterize  spectrum  data.  Building  on  top  of 

 Spectrum  Observatory,  Roy,  S.  designed  CityScape  [12],  which  is  a  metro-scale  observatory  that  measures 

 long-duration  IQ  data.  Iyer  et  al.  presented  SpecNet  [11]  which  enables  collection  and  measurement  of  real-time 

 spectrum.  The  radio  frequency  community  has  also  developed  an  open-sourced  web  tool,  IQEngine  [13],  for 

 analyzing, processing, and sharing radio frequency data. 

 In  the  following  sections,  we  perform  a  literature  review  with  the  most  related  works,  including  the  previous 

 generation  of  SpecPipe  [9],  Electrosense  [1],  Electrosense+  [2].  The  overall  comparison  of  the  works  is  shown  in 

 Table 1. 

 A. Previous Generation of SpecPipe 

 Jiang  et  al.  proposed  the  first  version  of  SpecPipe,  which  is  an  end-to-end  data  pipeline  for  spectrum  data.  They 

 utilized  the  pipeline  to  develop  a  showcase  website  for  interacting  with  the  airplane  tracker  application.  This  work 

 builds  upon  several  existing  approaches  in  the  areas  of  data  pipeline  design  and  spectrum  sensing.  The  client 

 program  receives  and  processes  the  raw  ADS-B  data  from  airplanes,  followed  by  the  annotator  module  to  enrich  the 

 data  with  additional  information.  With  the  annotated  information,  Elasticsearch  [7],  a  distributed  search  engine,  not 

 only  stores  but  also  searches  and  analyzes  the  data.  Finally,  the  backend  web  server  fetches  annotated  ADS-B  data 

 from  Elasticsearch  and  serves  it  to  the  front  end.  Besides  the  system  and  the  showcase  website,  they  provided 

 documentation for deploying the system and a monitoring system health dashboard with Prometheus [8]. 

 B. Electrosense 

 Rajendran  et  al.  proposed  a  centralized  system  architecture,  Electrosense,  which  facilitated  the  accessibility  of  radio 

 data.  Their  goal  was  to  create  a  reliable  and  efficient  environment  for  the  public  to  utilize  spectrum  data  while 

 addressing  potential  security  and  privacy  concerns.  They  accomplished  this  by  crowdsourcing  and  utilizing  low-cost 

 sensors  based  on  software-defined  radios  (SDRs)  [3]  and  Raspberry  Pis,  measuring  spectrum  data  in  the  range  of  20 
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 MHz  to  6  GHz.  The  main  infrastructure  that  controls  data  flow  is  a  Message  Queue  Telemetry  Transport  (MQTT). 

 The  distributed  system  backend  is  composed  of  an  ingestion  layer,  a  speed  layer,  and  a  serving  layer.  The  speed 

 layer  uses  Apache  Kafka  [6],  a  message  queuing  system,  as  a  buffer  for  the  incoming  data,  preventing  data  loss. 

 There  are  two  different  data  pipelines  following  the  ingestion  layer  which  are  the  speed  and  serving  layers.  The 

 batch  layer  employs  the  Hadoop  Distributed  File  System  (HDFS)  [4]  and  Apache  Spark  [5]  to  perform  nearly 

 real-time  parallel  processing.  Finally,  the  serving  layer  provides  an  open  API  for  users  to  easily  access  the  processed 

 data. 

 By  combining  all  the  components,  they  successfully  monitored  spectrum  data  using  low-cost  sensors  with  a 

 centralized backend system. 

 C. Electrosense + 

 Building  on  top  of  Electrosense,  Calvo-Palomino  et  al.  developed  Electrosense+,  which  also  allows  real-time 

 spectrum  data  decoding.  Besides  the  general  decoding  purpose,  they  also  added  a  peer-to-peer  communication 

 feature  to  the  architecture.  With  this  direct  pipeline  between  users  and  sensors,  they  increased  the  throughput  for 

 scalable  data  decoding.  In  addition  to  the  peer-to-peer  channel,  they  provided  users  incentives  by  developing  a  token 

 reward  system,  where  users  earn  tokens  whenever  their  sensors  are  online  and  being  used.  Security  is  another 

 important  topic  mentioned  in  their  work.  Since  users  do  not  receive  raw  spectrum  data,  they  added  a  privacy  layer 

 on top of the decoding process to prevent malicious data leakage. 

 D. Limitations of Previous Works 

 The  aforementioned  works  addressed  the  issue  of  giving  public  access  to  spectrum  data,  still,  there  are  some 

 limitations  of  the  mentioned  solutions.  For  example,  the  documentation  and  guidelines  provided  by  the  authors  are 

 limited,  such  that  they  still  leave  a  high  barrier  of  entry  for  the  users.  Moreover,  the  architectures  as  designed  are 

 unable  to  be  customized.  In  other  words,  the  data  format  that  the  system  is  receiving  is  not  able  to  be  modified  in 

 real  time.  Another  limitation  of  Electrosense  and  Electrosense+  is  that  the  system  design  lacks  a  health  check 

 component.  Therefore,  potential  issues  or  failures  within  their  systems  may  be  overlooked,  leading  to  increased 

 downtime.  Although  the  previous  generation  of  SpecPipe  has  a  health  check  component,  the  provided  information 

 on  the  dashboard  is  still  limited.  For  example,  it  does  not  show  the  geolocation,  data  rate,  and  registration  time  of 

 each device. 

 Due  to  these  intricacies,  the  prior  generation  of  SpecPipe,  Electrosense,  and  Electrosense+  lack  a  myriad  of  key 

 features  including  usability  and  flexibility  that  have  prevented  their  mass  adoption  by  end  users.  Created  to  fulfill 

 specific  needs  as  mentioned  above,  they  lack  extensibility  and  observability.  Parsing  through  the  user  manuals  for 

 these  systems  is  time-consuming  and  tedious,  making  development  difficult  and  error-prone.  These  limitations 

 prevent  a  general  adoption  of  said  technologies  to  less  technical  or  resourceful  audiences,  and  therefore,  limit  the 

 ability of users to be able to use and contribute to spectrum data. 
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 Electrosense [1]  Electrosense+ [2]  First generation of 
 SpecPipe [9] 

 SpecPipe 
 (This work) 

 Message broker  MQTT  MQTT  NATS  NATS 

 Peer-to-peer 
 communication  No  Yes  No  Yes 

 System health 
 monitoring  No  No  Grafana Dashboard  Grafana Dashboard 

 Extensibility  Low  Low  Low  High 

 Barrier to entry  High  High  Medium  Low 

 Real-time data 
 support  Yes  Yes  No  Yes 

 Table 1. Comparison of the works 

 3. Design Goals 
 In this section, we focus on mainly three aspects of the system, accessibility, extensibility, and scalability. 

 A. Accessibility 

 SpecPipe  is  designed  for  simple,  rapid  deployment  on  any  platform.  It  provides  containerized  solutions  using 

 Docker  that  allow  for  one-click  deployment  on  various  infrastructure  environments  and  platforms.  Comprehensive 

 documentation  and  hands-on  examples  guide  users  through  a  wide  range  of  use  cases  ranging  from  basic  to 

 advanced.  The  documentation  covers  topics  such  as  connecting  data  sources,  configuring  pipelines,  inferencing  with 

 ML  models,  and  generating  visual  results.  This  enables  users  across  skill  levels  to  quickly  get  up  and  running  with 

 their desired spectrum analysis tasks. 

 B. Extensibility 

 SpecPipe  is  designed  as  a  highly  modular  and  flexible  framework  so  users  can  easily  develop  custom  plugins  with 

 any  technology  stack.  It  is  deeply  integrated  with  the  open-source  software  ecosystem  and  provides  out-of-the-box 

 support  for  leading  open  source  technologies.  For  example,  it  uses  NATS  JetStream  for  scalable  streaming  data 

 ingestion.  Apache  Spark  integrates  natively  for  distributed  big  data  processing  and  analytics.  gRPC  powers 

 high-performance  communication  between  components.  SpecPipe  also  offers  deep  integration  with  popular  machine 

 learning  frameworks  like  TensorFlow  and  PyTorch  for  custom  machine  learning  (ML)  model  development  and 

 deployment. 
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 The  modular  architecture  makes  it  simple  to  extend  SpecPipe  by  developing  connections  to  new  data  sources, 

 adding  additional  processing  nodes,  or  implementing  custom  ML  algorithms.  Developers  can  leverage  their 

 preferred  languages  and  frameworks  to  extend  functionality  through  language-agnostic  APIs.  SpecPipe  handles  the 

 underlying  orchestration  and  deployment  so  users  can  focus  on  writing  their  own  custom  logic  to  suit  their  specific 

 needs.  The  extensive  open-source  integrations  also  allow  users  to  tap  into  rich  ecosystems  of  analytics,  data  science, 

 statistics, and ML tools. 

 C. Scalability 

 SpecPipe  is  optimized  for  scalability  from  the  start.  It  can  easily  scale  to  thousands  of  sensor  nodes  with  minimal 

 effort  as  a  result  of  its  distributed  architecture.  Horizontal  scaling  is  supported  out  of  the  box  by  adding  new  pipeline 

 instances,  while  auto-scaling  capabilities  dynamically  allocate  resources  based  on  load.  SpecPipe  maintains  a  small 

 memory  footprint  even  at  a  massive  scale  to  minimize  computing  and  energy  costs.  One  way  it  achieves  this  is  by 

 leveraging  Apache  Spark  for  distributed  processing,  meaning  petabyte-scale  datasets  can  be  analyzed  across  clusters 

 while individual nodes operate efficiently. 

 SpecPipe  also  offers  fine-grained  tuning  of  scalability  by  allowing  different  pipeline  stages  to  scale  independently. 

 Additional  ingestion  capacity  can  be  added  to  handle  high  data  volumes  from  sensors,  while  the  distributed 

 processing  layer  can  scale  analysis  and  ML  workloads  independently  of  the  ingestion  rates.  SpecPipe  automatically 

 handles  the  routing  of  data  across  the  scale-out  architecture.  This  flexible  scaling  unlocks  new  spectrum  analysis 

 scenarios involving vast numbers of IoT sensors or complex analytics. 

 4. Architecture 
 SpecPipe  is  built  to  transport,  store,  and  organize  large  amounts  of  data.  The  architecture  supports  many  ML  and  AI 

 workloads  related  to  Spectrum  Data,  but  does  not  implement  these  ML/AI  workloads  itself.  End  users  do  not  modify 

 the  code  of  SpecPipe  directly  in  most  cases,  but  rather  implement  their  own  applications  using  SpecPipe’s  flexible 

 APIs. 

 Term  Description 

 NATS (Neural Autonomic 

 Transport System) 

 NATS is the key pillar that SpecPipe was built upon, handling communication, data, 

 and configuration requests across nodes. NATS is a lightweight and 

 high-performance messaging system designed for distributed systems, offering 

 simplicity, reliability, and scalability for cloud-native applications. 

 Edge Node  An edge node is a device (such as a laptop or a Raspberry Pi) that has a 

 software-defined radio attached to it via USB and is connected to the system. The 
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 Term  Description 

 radio is listening at a particular frequency that is initially set when the edge device 

 registers with the system but can be changed dynamically later. 

 Applications  Applications are software that run on devices connected to the system. An 

 application can receive spectrum from an edge node, get metadata of edge nodes 

 (such as sampling rate, geolocation), and update the configuration of an edge node. 

 Health Check Server  The Health Check Server is an example of an Application that can run on devices 

 connected to the system. The purpose of the health check system is to check the 

 health of the nodes. 

 Controller API  A controller API serves as the interface for managing and orchestrating resources 

 within SpecPipe, enabling Applications to programmatically interact with and 

 manipulate the configuration and behavior of the Edge Nodes. SpecPipe currently 

 supports 3 APIs for both FM devices and IQ devices, including read device 

 configurations, update devices, and get all devices. The Open API is listed in 

 Appendix A. 

 Table 2. Key Terms for Architecture 

 The SpecPipe architecture can be understood using the key terms of the architecture (Table 2), the architecture 

 diagram (Figure 1) and the information paths supported (Table 3). 
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 Figure 1. SpecPipe Architecture 

 Information path  Explanation 

 Data Flow (Line ‘1’ 

 in Figure 1) 

 Raw IQ and Demodulated radio data is sent from Edge Nodes via NATS to Applications. 

 Peer to Peer Flow 

 (Line ‘2’ in Figure 1) 

 Raw IQ radio data is sent from Edge Nodes to Applications via a socket. This is useful for 

 sending high bit rate (> 5 mbps) Raw IQ Data since if this data would be sent via NATS, 

 the system would get bogged down. 

 Control Flow 1 (Line 

 ‘3’ in Figure 1) 

 Applications update the configuration of an edge node (such as changing its sampling rate 

 or frequency) via the Controller API. The Controller API then publishes a message on the 

 appropriate NATS subject to change that setting for an Edge Node. 

 Control Flow 2 (Line 

 ‘4’ in Figure 1) 

 Applications can get edge node metadata (such as their location and sampling rate) via the 

 Controller API. 

 Monitoring Flow 2 

 (Line ‘5’, ‘6’ in 

 Figure 1) 

 Applications can monitor the health of the Edge Nodes by running the health command. 

 When this command is issued, NATS sends heartbeat requests to all the Edge Nodes (line 

 5). Then, the edge nodes respond with a heartbeat (line 6) to the server via NATS. 

 Table 3. SpecPipe Information Paths 
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 Many examples have been created for using the SpecPipe framework 

 (  https://ml4wireless.github.io/specpipe/examples  ),  two of which (FM and ADS-B) are shown below: 

 A. Cloud Architecture 

 To  support  running  in  a  Cloud  environment,  the  entire  application  stack  has  been  containerized  into  various  Docker 

 images,  bundled  together  with  a  Docker  Compose  manifest  for  easy  deployment  of  key  services.  One  such  image 

 contains  the  Controller  service  or  the  backend  API  server  that  supports  interaction  with  SpecPipe  and  any  number  of 

 edge  nodes.  Additional  images  are  built  to  be  run  on  the  edge  nodes  themselves  which  set  up  a  standardized 

 interface  for  data  collection  across  different  host  environments.  A  majority  of  SpecPipe’s  application  code  is  written 

 in  Go,  a  highly  performant  compiled  language,  allowing  for  resource-efficient  deployments  to  Cloud  environments 

 or  hosts  with  low  computing  power.  Lastly,  NATS  represents  the  key  pillar  of  SpecPipe’s  functionality,  handling 

 communication, data transfer, and forwarding of configuration requests across nodes. 

 B. Edge Node Architecture 

 SpecPipe’s  scalable  infrastructure  allows  any  number  of  edge  nodes  to  connect  and  begin  collecting  data,  either  for 

 immediate  consumption  or  recording  to  long-term  storage.  The  edge  container  contains  multiple  utilities  for 

 handling  data,  including  various  common  decoding  methods  such  as  FM  and  AM  radio.  Direct  streaming  of  IQ  data 

 is  also  supported  but  may  be  bandwidth  intensive.  Additional  functionality  includes  the  ability  of  edge  nodes  to 

 directly  forward  data  in  a  peer-to-peer  environment  without  needing  to  interface  directly  with  the  server;  this 

 supports  the  separation  of  concerns  at  the  edge  and  can  support  customized  decoding  or  data  processing  methods 

 before data is sent over the network. 

 C. Software Development Kit 

 With  a  flexible  system  to  support  many  workflows  on  both  the  client  and  the  server,  additional  functionality  includes 

 an  auto-generated  API  and  client  SDK  for  interacting  with  SpecPipe’s  various  systems.  These  APIs  help  with 

 configuration,  data  consumption,  and  monitoring  from  external  applications  without  needing  to  modify  any  internal 
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 SpecPipe  source  code.  These  APIs  and  SDKs  can  be  used  by  a  wide  variety  of  programming  languages  and 

 workflows, ensuring future compatibility with multiple products and technology stacks. 

 5. Deliverables 
 Publicly  accessible  artifacts  for  SpecPipe  include  three  source  code  repositories.  specpipe  itself  contains  the 

 components  to  run  the  backend  infrastructure  in  the  cloud  and  also  includes  customizable  software  for  distribution  to 

 edge  nodes.  There  are  also  six  different  independent  examples  shown  under  the  _example  directory  of  this 

 repository.  An  additional  repository,  specpipe-sdk-py  ,  contains  SpecPipe’s  Python  SDK  which  allows  developers  to 

 interact  with  and  develop  tooling  around  SpecPipe  with  their  preferred  language  of  choice.  The  complete  software 

 bill of materials can be found in Appendix B 

 Documentation  has  been  a  key  priority  in  SpecPipe’s  development,  aligning  with  our  project  goals  of  creating  an 

 accessible  solution  to  users  from  all  backgrounds.  The  system  architecture,  as  well  as  onboarding  steps,  are  included 

 both  in  our  project  README  files  as  well  as  a  standalone  documentation  site  hosted  within  GitHub  Pages,  as  shown 

 in  Figure  2  and  Figure  3.  The  steps  to  get  SpecPipe  up  and  running  are  presented  in  a  quick  and  minimal  fashion 

 while  also  providing  additional  resources  for  advanced  users  looking  to  customize  and  extend  the  system.  The 

 documentation website is developed using Docusaurus. 

 For  many  users,  the  quickest  way  to  understand  a  software  system  is  to  see  real  world  examples  of  how  it  can  be 

 used.  Therefore,  specpipe-demo  ,  covering  a  variety  of  different  use  cases  that  SpecPipe  can  help  with  is  presented. 

 The  website  is  developed  using  TypeScript  using  the  framework  React,  specifically  Next.js  framework.  We  use 

 TailwindCSS  as  the  CSS  framework  so  as  to  streamline  and  expedite  the  development  process.  The  details  of  the 

 demos are discussed in the following sections A to D. 
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 Figure 2. SpecPipe documentation website hosted on GitHub pages using Docusauraus framework. 

 Figure 3. SpecPipe documentation website illustrating commands to setup SpecPipe. 
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 Figure 4. SpecPipe demo website landing page. 

 A. Monitoring Dashboard 

 In  addition  to  the  system  itself,  we  have  also  developed  tooling  and  workflows  for  observability  in  a  production 

 environment,  as  shown  in  Figure  5  and  Figure  6.  A  Grafana  dashboard  template  is  included  with  the  SpecPipe 

 source  code  with  various  panels  to  monitor  resource  usage,  data  flow,  and  other  key  metrics  around  system  health 

 and  performance.  Metrics  are  exposed  to  Grafana  through  Prometheus,  a  time  series  database  that  is  built  with 

 user-friendly  extensibility  in  mind.  After  registering  an  edge  device,  its  information  will  automatically  appear  on  the 

 Grafana dashboard, including charts of device geo-locations and online status, all ready to use in our  system. 

 Figure 5. Grafana Dashboard of SpecPipe showing the geolocation, metadata, data rate of FM devices as well as the 

 metadata of IQ devices. 
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 Figure 6. Grafana Dashboard showing the system health status of NATS JetStream, including storage used and 

 consumer metrics. 

 B. Speech to text 

 In  the  speech  to  text  demo,  a  basic  FastAPI  web  server  is  employed  to  retrieve  FM  data  from  NATS.  This  data  is 

 then  decoded  into  .wav  chunks,  optimized  for  compatibility  with  the  SpeechRecognition  model.  The  resulting  text  is 

 streamed  to  listeners  via  websocket  communication.  Additionally,  a  demonstration  frontend  application  accompanies 

 the  setup,  utilizing  websocket  reception  to  display  live  text  in  a  scrollable  text  box.  We  streamed  the  audio  from  our 

 mock  server,  dev-0-mock  ,  to  ensure  that  the  audio  contains  words.  As  shown  in  Figure  7,  the  corresponding  caption 

 was automatically generated. 

 Figure 7. Speech to text demo of the website. The captions are generated using the speech to text model. 
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 C. Controller plane 

 The  controller  plane  comprises  a  device  selector  at  the  top,  defaulting  to  the  mock  device,  dev-0-mock  .  Clicking  the 

 volume  button  adjacent  to  it  initiates  audio  playback.  Below,  three  sliders  adjust  frequency,  sample  rate,  and 

 resample rate. To alter device configuration, adjust the sliders and click the modify button below. 

 Figure 8. SpecPipe demo website that enables users to modify configuration of registered devices. 

 D. IQEngine integration 

 IQEngine  is  a  web-based  tool  designed  for  analyzing  radio  frequency  (RF)  data,  facilitating  the  processing 

 as  well  as  sharing  of  RF  data  and  displaying  spectrograms  directly  within  web  browsers.  We  have  integrated  the  IQ 

 Engine  function  into  our  demo  website.  Users  can  initiate  analysis  by  clicking  on  Local  File  Pair  on  the  left-hand 

 side  and  uploading  example  data  files,  namely  iq_example.sigmf-data  and  iq_example.sigmf-meta  ,  located  in  the 

 _examples/plot_iq  folder  of  specpipe  repository.  Once  the  files  are  uploaded,  the  spectrogram  is  generated  for 

 further analysis and processing, as illustrated in Figure 9. 
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 Figure 9. IQEngine is a web-based application to process, visualize, and analyze spectrum data. 

 6. Conclusion 
 In this section we will cover SpecPipe’s accomplishments as well as future areas of improvement for this project. 

 A. Results 

 Holistically,  SpecPipe  has  achieved  many  of  our  initial  design  goals  which  center  on  making  radio  spectrum  data 

 accessible  for  collection  and  analysis  in  many  different  environments.  Accessibility  has  been  a  primary  driver  of 

 multiple  key  pillars  in  our  project,  with  our  open-source  repository,  extensive  documentation,  and  diverse  set  of 

 examples  allowing  beginner  level  developers,  students,  class  projects,  and  other  organizations  to  easily  stand  up  a 

 comprehensive  system  for  handling  spectrum  data.  It  takes  4  commands  to  start  a  SpecPipe  edge  device,  1  command 

 to  start  a  SpecPipe  server,  and  1  import  statement  in  a  Python  script  to  access  SpecPipe’s  Python  SDK.  In  our  initial 

 user testing, we have seen users able to start up a new SpecPipe edge device within 2 minutes. 

 SpecPipe’s  work  on  extensibility  and  customization  has  also  increased  the  number  of  users  that  can  benefit  from  the 

 development  of  the  system,  while  a  highly  performance  and  resource  efficient  solution  allows  consumers  without 

 comprehensive infrastructure support to still utilize complex data pipelines. 

 B. Future Works 

 Despite  all  of  the  progress  that  has  been  made,  there  is  additional  room  for  improvements  in  future  years.  Examples 

 of  additional  work  areas  may  include  additional  support  for  third-party  integrations,  including  direct  streaming  to 

 open-source  spectrum  data  platforms  such  as  IQEngine.  Additional  SDKs  for  other  languages  than  Python  such  as 
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 C++,  Rust,  and  Go  Programming  Language  may  also  lower  barriers  to  entry  for  other  development  ecosystems. 

 These are features that we identified as valuable additions, however were not able to include due to time constraints. 

 Additionally,  while  the  SpecPipe  team  has  done  load-testing,  there  hasn’t  been  much  usability  testing  for  this 

 project.  Given  that  a  key  goal  of  this  project  is  to  democratize  Spectrum  data,  it  is  critical  to  conduct  rigorous 

 usability  studies  to  evaluate  how  SpecPipe  meets  the  needs  of  diverse  user  groups.  For  these  studies,  the  research 

 question  could  focus  on  identifying  the  challenges  users  encounter  during  installation,  extension,  and  use  of 

 SpecPipe,  as  well  as  determining  the  learnability  of  the  system.  The  intended  participants  for  this  study  would 

 include  hobbyists,  academics,  principal  investigators,  and  small  research  teams  who  do  not  have  a  large  engineering 

 team  at  their  disposal.  Qualitative  methods  such  as  interviews  and  direct  observations,  along  with  quantitative 

 methods  like  task  completion  time  and  error  rates  can  be  used  to  gather  comprehensive  insights  into  user 

 experiences  across  these  diverse  groups.  By  understanding  these  challenges,  we  can  tailor  future  enhancements  to 

 better  serve  our  users'  needs.  While  there  is  more  to  be  accomplished  in  the  future,  this  work  lays  the  foundation  for 

 future contributions, innovations, and open source development 

 7. References 
 [1]  Rajendran,  Sreeraj,  et  al.  "Electrosense:  Open  and  big  spectrum  data."  IEEE  Communications  Magazine  56.1 

 (2017): 210-217. 

 [2]  Calvo-Palomino,  Roberto,  et  al.  "Electrosense+:  Crowdsourcing  radio  spectrum  decoding  using  IoT  receivers." 

 Computer Networks 174 (2020): 107231. 

 [3]  Sadiku,  Mathew  NO,  and  Cajetan  M.  Akujuobi.  "Software-defined  radio:  a  brief  overview."  Ieee  Potentials  23.4 

 (2004): 14-15. 

 [4]  Shvachko,  Konstantin,  et  al.  "The  hadoop  distributed  file  system."  2010  IEEE  26th  symposium  on  mass  storage 

 systems and technologies (MSST). Ieee, 2010. 

 [5]  Zaharia,  Matei,  et  al.  "Apache  spark:  a  unified  engine  for  big  data  processing."  Communications  of  the  ACM 

 59.11 (2016): 56-65. 

 [6]  Kreps,  Jay,  Neha  Narkhede,  and  Jun  Rao.  "Kafka:  A  distributed  messaging  system  for  log  processing." 

 Proceedings of the NetDB. Vol. 11. No. 2011. 2011. 

 [7]  Elasticsearch  GitHub:  elastic/elasticsearch-labs:  Notebooks  &  Example  Apps  for  Search  &  AI  Applications  with 

 Elasticsearch (github.com) 

 [8]  Rabenstein,  B.,  &  Volz,  J.  (2015).  Prometheus:  A  Next-Generation  Monitoring  System  (Talk).  Dublin:  USENIX 

 Association. 

 [9]  Z.  Jiang,  Victor  Li  et  al.  “SpecPipe:  A  scalable  cloud-based  AI/ML-facilitating  data  pipeline  for  spectrum”  May 

 2023.  https://ml4wireless.github.io/adsb-nats/assets/files/paper-3a780e70dcd5731c5c213f8b1a20a505.pdf 

 [10]  Zheleva,  Mariya  Zhivkova,  et  al.  "Enabling  a  nationwide  radio  frequency  inventory  using  the  spectrum 

 observatory." IEEE Transactions on Mobile Computing 17.2 (2017): 362-375. 

 18 

https://github.com/elastic/elasticsearch-labs
https://github.com/elastic/elasticsearch-labs
https://ml4wireless.github.io/adsb-nats/assets/files/paper-3a780e70dcd5731c5c213f8b1a20a505.pdf


 [11] Iyer, Anand, et al. "Specnet: Spectrum sensing sans frontieres." Proc. NSDI. 2011. 

 [12]  Roy,  S.,  et  al.  "Cityscape:  A  metro-area  spectrum  observatory."  2017  26th  International  Conference  on 

 Computer Communication and Networks (ICCCN). IEEE, 2017. 

 [13] IQEngine website. https://iqengine.org/ 

 19 



 8. Appendix 
 A. API Specification 

 Method  Request URL  Sample Request 
 Body 

 Response Schema 
 (Status code 200) 

 Description 

 GET  /fm/devices/{devicename 
 } 

 N/A  { 
 "device": { 
 "register_ts": 0, 
 "specpipe_version": 

 "string", 
 "name": "string", 
 "sample_rate": "string", 
 "resample_rate": 

 "string", 
 "freq": "string", 
 "longitude": 0, 
 "latitude": 0 

 } 
 } 

 Read FM device 
 configuration 

 PUT  /fm/devices/{devicename 
 } 

 { 
 "freq": "string", 
 "sample_rate": 

 "string", 
 "resample_rate": 

 "string" 
 } 

 { 
 "device": { 
 "register_ts": 0, 
 "specpipe_version": 

 "string", 
 "name": "string", 
 "sample_rate": "string", 
 "resample_rate": 

 "string", 
 "freq": "string", 
 "longitude": 0, 
 "latitude": 0 

 } 
 } 

 Update FM 
 device 

 GET  /fm/devices  N/A  { 
 "devices": [ 
 { 
 "register_ts": 0, 
 "specpipe_version": 

 "string", 
 "name": "string", 
 "sample_rate": "string", 
 "resample_rate": 

 "string", 
 "freq": "string", 
 "longitude": 0, 
 "latitude": 0 

 } 
 ] 

 List FM devices 
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 } 

 GET  /iq/devices/{devicename}  N/A  { 
 "device": { 
 "register_ts": 0, 
 "specpipe_version": 

 "string", 
 "name": "string", 
 "sample_rate": "string", 
 "freq": "string", 
 "longitude": 0, 
 "latitude": 0, 
 "forward": true 

 } 
 } 

 Read IQ device 
 configuration 

 PUT  /iq/devices/{devicename}  { 
 "freq": "string", 
 "sample_rate": 

 "string" 
 } 

 { 
 "device": { 
 "register_ts": 0, 
 "specpipe_version": 

 "string", 
 "name": "string", 
 "sample_rate": "string", 
 "freq": "string", 
 "longitude": 0, 
 "latitude": 0, 
 "forward": true 

 } 
 } 

 Update IQ device 

 GET  /iq/devices  N/A  { 
 "devices": [ 
 { 
 "register_ts": 0, 
 "specpipe_version": 

 "string", 
 "name": "string", 
 "sample_rate": "string", 
 "freq": "string", 
 "longitude": 0, 
 "latitude": 0, 
 "forward": true 

 } 
 ] 

 } 

 List IQ devices 
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 B. Software Bill of Materials 

 Versions enumerated in following appendix sections: 

 Software Material  Description 

 Go  Primary language for SpecPipe edge node and server controller 
 software 

 Python  Primary language for SpecPipe auto-generated API utilities and 
 example projects 

 Docker  Utility to containerize SpecPipe edge and server nodes across 
 platforms 

 Grafana  Dashboard customization software to support SpecPipe’s monitoring 
 tools 

 Prometheus  Time-series database used to support reporting, storage, and 
 monitoring of quantitative metrics 

 Docusaurus  Framework for deploying SpecPipe’s documentation site 

 NATS  Messaging system for handling large-scale data applications 

 dump1090  Utility to process and decode aircraft ADS-B data 

 librtlsdr  Interface for interacting with software defined radios 

 FastAPI  Web server to support interfacing with examples and demo 
 applications 

 SpeechRecognition  Python library for running local speech-to-text models 

 Next.js  React framework for server side rendering of demo applications 

 React  Library for generating HTML outputs based on client application 
 needs 

 Tailwind CSS  Utility for stylization of React pages in our demo applications 

 TypeScript  Utility for type checking and static analysis of our frontend demo 
 applications 
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 C. Exact Software Requirements 

 SpecPipe Go Packages 
 Go 1.2.0 
 github.com/ThreeDotsLabs/watermill v1.2.0 
 github.com/ThreeDotsLabs/watermill-nats/v2 v2.0.2 
 github.com/getkin/kin-openapi v0.120.0 
 github.com/gin-contrib/cors v1.4.0 
 github.com/gin-gonic/gin v1.9.1 
 github.com/nats-io/nats.go v1.31.0 
 github.com/oapi-codegen/runtime v1.0.0 
 github.com/sirupsen/logrus v1.9.3 
 github.com/spf13/cobra v1.8.0 
 github.com/spf13/viper v1.17.0 
 google.golang.org/grpc v1.61.1 
 google.golang.org/protobuf v1.32.0 
 github.com/apapsch/go-jsonmerge/v2 v2.0.0 // indirect 
 github.com/bytedance/sonic v1.10.0-rc3 // indirect 
 github.com/chenzhuoyu/base64x v0.0.0-20230717121745-296ad89f973d // indirect 
 github.com/chenzhuoyu/iasm v0.9.0 // indirect 
 github.com/fsnotify/fsnotify v1.6.0 // indirect 
 github.com/gabriel-vasile/mimetype v1.4.2 // indirect 
 github.com/gin-contrib/sse v0.1.0 // indirect 
 github.com/go-openapi/jsonpointer v0.19.6 // indirect 
 github.com/go-openapi/swag v0.22.4 // indirect 
 github.com/go-playground/locales v0.14.1 // indirect 
 github.com/go-playground/universal-translator v0.18.1 // indirect 
 github.com/go-playground/validator/v10 v10.14.1 // indirect 
 github.com/goccy/go-json v0.10.2 // indirect 
 github.com/golang/protobuf v1.5.3 // indirect 
 github.com/google/uuid v1.4.0 // indirect 
 github.com/hashicorp/hcl v1.0.0 // indirect 
 github.com/inconshreveable/mousetrap v1.1.0 // indirect 
 github.com/invopop/yaml v0.2.0 // indirect 
 github.com/josharian/intern v1.0.0 // indirect 
 github.com/json-iterator/go v1.1.12 // indirect 
 github.com/klauspost/compress v1.17.1 // indirect 
 github.com/klauspost/cpuid/v2 v2.2.5 // indirect 
 github.com/leodido/go-urn v1.2.4 // indirect 
 github.com/lithammer/shortuuid/v3 v3.0.7 // indirect 
 github.com/magiconair/properties v1.8.7 // indirect 
 github.com/mailru/easyjson v0.7.7 // indirect 
 github.com/mattn/go-isatty v0.0.19 // indirect 
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 github.com/mitchellh/mapstructure v1.5.0 // indirect 
 github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect 
 github.com/modern-go/reflect2 v1.0.2 // indirect 
 github.com/mohae/deepcopy v0.0.0-20170929034955-c48cc78d4826 // indirect 
 github.com/nats-io/nkeys v0.4.6 // indirect 
 github.com/nats-io/nuid v1.0.1 // indirect 
 github.com/oklog/ulid v1.3.1 // indirect 
 github.com/pelletier/go-toml/v2 v2.1.0 // indirect 
 github.com/perimeterx/marshmallow v1.1.5 // indirect 
 github.com/pkg/errors v0.9.1 // indirect 
 github.com/sagikazarmark/locafero v0.3.0 // indirect 
 github.com/sagikazarmark/slog-shim v0.1.0 // indirect 
 github.com/sourcegraph/conc v0.3.0 // indirect 
 github.com/spf13/afero v1.10.0 // indirect 
 github.com/spf13/cast v1.5.1 // indirect 
 github.com/spf13/pflag v1.0.5 // indirect 
 github.com/subosito/gotenv v1.6.0 // indirect 
 github.com/twitchyliquid64/golang-asm v0.15.1 // indirect 
 github.com/ugorji/go/codec v1.2.11 // indirect 
 go.uber.org/atomic v1.9.0 // indirect 
 go.uber.org/multierr v1.9.0 // indirect 
 golang.org/x/arch v0.4.0 // indirect 
 golang.org/x/crypto v0.18.0 // indirect 
 golang.org/x/exp v0.0.0-20230905200255-921286631fa9 // indirect 
 golang.org/x/net v0.20.0 // indirect 
 golang.org/x/sys v0.16.0 // indirect 
 golang.org/x/text v0.14.0 // indirect 
 google.golang.org/genproto/googleapis/rpc v0.0.0-20240205150955-31a09d347014 
 gopkg.in/ini.v1 v1.67.0 // indirect 
 gopkg.in/yaml.v3 v3.0.1 // indirect 
 github.com/ThreeDotsLabs/watermill v1.2.0 
 github.com/ThreeDotsLabs/watermill-nats/v2 v2.0.2 
 github.com/nats-io/nats.go v1.31.0 
 github.com/google/uuid v1.3.1 // indirect 
 github.com/klauspost/compress v1.17.1 // indirect 
 github.com/lithammer/shortuuid/v3 v3.0.7 // indirect 
 github.com/nats-io/nkeys v0.4.6 // indirect 
 github.com/nats-io/nuid v1.0.1 // indirect 
 github.com/oklog/ulid v1.3.1 // indirect 
 github.com/pkg/errors v0.9.1 // indirect 
 golang.org/x/crypto v0.14.0 // indirect 
 golang.org/x/sys v0.13.0 // indirect 
 github.com/gordonklaus/portaudio v0.0.0-20230709114228-aafa478834f5 
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 External Docker Images 
 grafana/grafana:9.3.6 
 Nats:2.10 
 prom/prometheus:v2.45.0 

 Demo Python Packages 
 annotated-types==0.6.0 
 anyio==4.3.0 
 certifi==2024.2.2 
 cffi==1.16.0 
 charset-normalizer==3.3.2 
 click==8.1.7 
 fastapi==0.110.1 
 h11==0.14.0 
 idna==3.6 
 nats-py==2.7.2 
 pocketsphinx==5.0.3 
 pycparser==2.22 
 pydantic==2.6.4 
 pydantic_core==2.16.3 
 requests==2.31.0 
 sniffio==1.3.1 
 sounddevice==0.4.6 
 SpeechRecognition==3.10.3 
 starlette==0.37.2 
 typing_extensions==4.11.0 
 urllib3==2.2.1 
 uvicorn==0.29.0 
 websockets==12.0 
 contourpy==1.2.0 
 cycler==0.12.1 
 fonttools==4.44.3 
 importlib-resources==6.1.1 
 kiwisolver==1.4.5 
 matplotlib==3.8.2 
 nats-py==2.6.0 
 numpy==1.26.2 
 packaging==23.2 
 Pillow==10.1.0 
 pyparsing==3.1.1 
 python-dateutil==2.8.2 
 six==1.16.0 
 zipp==3.17.0 
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 annotated-types==0.6.0 
 anyio==4.3.0 
 certifi==2024.2.2 
 charset-normalizer==3.3.2 
 click==8.1.7 
 fastapi==0.110.1 
 h11==0.14.0 
 idna==3.6 
 nats-py==2.7.2 
 pydantic==2.6.4 
 pydantic_core==2.16.3 
 requests==2.31.0 
 sniffio==1.3.1 
 SpeechRecognition==3.10.3 
 starlette==0.37.2 
 typing_extensions==4.11.0 
 urllib3==2.2.1 
 uvicorn==0.29.0 
 websockets==12.0 
 pytz==2024.1 

 Frontend Demo Dependencies 
 "node": ">=18.17.0", 
 "packageManager": "yarn@1.22.19", 
 "@emotion/react": "^11.11.4", 
 "@emotion/styled": "^11.11.0", 
 "@headlessui/react": "^1.7.18", 
 "@heroicons/react": "^2.1.1", 
 "@mui/icons-material": "^5.15.12", 
 "@mui/material": "^5.15.12", 
 "@next/bundle-analyzer": "^14.0.3", 
 "@radix-ui/react-accordion": "^1.1.2", 
 "@radix-ui/react-checkbox": "^1.0.4", 
 "@radix-ui/react-dialog": "^1.0.5", 
 "@radix-ui/react-dropdown-menu": "^2.0.6", 
 "@radix-ui/react-form": "^0.0.3", 
 "@radix-ui/react-label": "^2.0.2", 
 "@radix-ui/react-popover": "^1.0.7", 
 "@radix-ui/react-radio-group": "^1.1.3", 
 "@radix-ui/react-scroll-area": "^1.0.5", 
 "@radix-ui/react-select": "2.0.0", 
 "@radix-ui/react-slider": "^1.1.2", 
 "@radix-ui/react-switch": "^1.0.3", 
 "@radix-ui/react-tabs": "^1.0.4", 
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 "@radix-ui/react-toggle-group": "^1.0.4", 
 "@radix-ui/react-tooltip": "^1.0.7", 
 "@semantic-release/changelog": "^6.0.3", 
 "@semantic-release/commit-analyzer": "^11.1.0", 
 "@semantic-release/git": "^10.0.1", 
 "@semantic-release/github": "^9.2.3", 
 "@semantic-release/npm": "^11.0.1", 
 "@semantic-release/release-notes-generator": "^12.1.0", 
 "@t3-oss/env-nextjs": "^0.7.1", 
 "@trivago/prettier-plugin-sort-imports": "^4.3.0", 
 "@vercel/otel": "^0.3.0", 
 "axios": "^1.6.7", 
 "class-variance-authority": "^0.7.0", 
 "cors": "^2.8.5", 
 "dotenv": "^16.4.5", 
 "express": "^4.18.3", 
 "lodash": "^4.17.21", 
 "mongoose": "^8.2.1", 
 "nats": "^2.21.0", 
 "nats.ws": "^1.22.0", 
 "next": "^14.1.4", 
 "next-compose-plugins": "^2.2.1", 
 "nodemon": "^3.1.0", 
 "react": "^18.2.0", 
 "react-dom": "^18.2.0", 
 "react-toastify": "^10.0.4", 
 "stream": "^0.0.2", 
 "tailwind-merge": "^2.0.0", 
 "yarn": "^1.22.21", 
 "zod": "^3.22.4", 
 "@babel/core": "^7.23.3", 
 "@babel/plugin-syntax-flow": "^7.23.3", 
 "@babel/plugin-transform-optional-chaining": "^7.23.4", 
 "@babel/plugin-transform-react-jsx": "^7.23.4", 
 "@jest/globals": "^29.7.0", 
 "@opentelemetry/api": "1.7.0", 
 "@opentelemetry/resources": "1.18.1", 
 "@opentelemetry/sdk-node": "0.45.1", 
 "@opentelemetry/sdk-trace-node": "1.18.1", 
 "@opentelemetry/semantic-conventions": "1.18.1", 
 "@playwright/test": "^1.40.0", 
 "@storybook/addon-essentials": "^7.5.3", 
 "@storybook/addon-interactions": "^7.5.3", 
 "@storybook/addon-links": "^7.5.3", 
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 "@storybook/blocks": "^7.5.3", 
 "@storybook/nextjs": "^7.5.3", 
 "@storybook/react": "^7.5.3", 
 "@storybook/test-runner": "^0.15.2", 
 "@storybook/testing-library": "^0.2.2", 
 "@testing-library/jest-dom": "^6.1.4", 
 "@testing-library/react": "^14.1.2", 
 "@total-typescript/ts-reset": "^0.5.1", 
 "@types/jest": "^29.5.10", 
 "@types/node": "^20.10.0", 
 "@types/react": "^18.2.38", 
 "@types/react-dom": "^18.2.17", 
 "@typescript-eslint/eslint-plugin": "^6.12.0", 
 "@typescript-eslint/parser": "^6.12.0", 
 "all-contributors-cli": "^6.26.1", 
 "autoprefixer": "^10.4.18", 
 "cross-env": "^7.0.3", 
 "eslint": "8.54.0", 
 "eslint-config-next": "14.0.3", 
 "eslint-config-prettier": "^9.0.0", 
 "eslint-config-react-app": "^7.0.1", 
 "eslint-plugin-import": "^2.29.0", 
 "eslint-plugin-react": "7.33.2", 
 "eslint-plugin-storybook": "^0.6.15", 
 "eslint-plugin-tailwindcss": "^3.13.0", 
 "fetch-mock": "^9.11.0", 
 "gzip-size": "6", 
 "jest": "^29.7.0", 
 "jest-environment-jsdom": "^29.7.0", 
 "mkdirp": "^3.0.1", 
 "npm-only-allow": "^1.2.6", 
 "patch-package": "^8.0.0", 
 "postcss": "^8.4.35", 
 "postinstall-postinstall": "^2.1.0", 
 "prettier": "3.0.3", 
 "prettier-plugin-tailwindcss": "^0.5.7", 
 "semantic-release": "^22.0.8", 
 "storybook": "^7.5.3", 
 "tailwindcss": "^3.4.1", 
 "ts-jest": "^29.1.1", 
 "tsc": "^2.0.4", 
 "typescript": "5.3.2", 
 "webpack": "5.89.0" 
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