
SpecPipe:
A scalable cloud-based AI/ML-facilitating data pipeline for spectrum

Zhen Jiang, Victor Li, Shruti Satrawada, Sivani Voruganti, Gen Yang
May 2023

1 Executive Summary

This paper proposes an adaptable end-to-end data
pipeline for radio spectrum data that allows interested
practitioners or the general public to harness, under-
stand, and utilize distributed radio spectrum data with-
out access to company-level resources. Currently, there
is no mature end-to-end solution for access to distributed
spectrum data, which is complex and dynamic in nature,
with additional requirements for custom post-processing
depending on the intended use.

Spectrum is a resource consisting of the range of electro-
magnetic radiation used to transmit information wire-
lessly. The radio frequency spectrum powers all commu-
nication around us–from cell phones to WiFi and more.
There are already a myriad of streams of this data be-
ing broadcasted without people being aware that this
information is accessible and can be used for new and
innovative applications. Even if people are aware of this
data, reading, processing, and utilizing it is not straight-
forward–which is exactly what our project is meant to
address with our customizable pipeline and documenta-
tion.

The pipeline is designed to transform raw human-
unreadable radio spectrum data into a final user-facing
application or visualization, allowing users to process
diverse types of spectrum data while still maintaining
necessary security and control over private data that
they may feed into their pipelines.The proposed solution
pipeline is lightweight, portable, and robust, enabled by
utilizing affordable state-of-the-art cloud technologies for
risk and fault tolerance.

We also provide detailed documentation and start-from-
scratch tutorials, enabling audiences of diverse experi-
ence levels to build their own custom spectrum pipelines,
such as radio content analyzers and signal monitors.

The paper describes the design choices by building out
an example Airplane Tracker application built on top of
the pipeline from beginning to end, showcasing how the

pipeline can be adapted to process diverse data types
and improve accessibility to spectrum resources.

The paper provides valuable insights into designing dis-
tributed spectrum data pipelines and their potential for
increasing user accessibility to spectrum resources. Our
entire work is open-source, customizable, and affordable,
making it accessible to motivated individuals without
the need for extensive resources. The proposed direc-
tions for future work include additional user studies and
testing to validate the effectiveness of the tutorials and
further refinement of the data pipeline to enhance its
efficiency and accuracy. Overall, this work takes steps
towards facilitating the development of more effective
and user-friendly applications in various domains such
as telecommunications and security, ultimately democ-
ratizing access to spectrum data and enabling a broader
range of stakeholders to leverage this valuable resource
for their own purposes.

2 Introduction

2.1 Problem & Opportunities

Radio Spectrum is a resource consisting of the range of
electromagnetic radiation frequencies used to transmit
information wirelessly. The radio frequency spectrum
powers much of the communication around us—from
FM, to aircraft safety and communications, to WiFi and
5G signals for mobile phones. With important informa-
tion communicated every millisecond, spectrum data is
essential and there are limitless applications that can be
built using spectrum data.

Currently, there is no mature and affordable end-to-end
solution for the general public to harness, understand,
and utilize distributed radio spectrum data without ac-
cess to company-level resources. This is due to the fact
that Wireless Spectrum data is complex and dynamic in
nature. A custom pipeline is required to handle the mas-
sive volume and diversity of the data, while still ensuring
high quality and reliability. Privacy is another impor-



tant consideration when it comes to spectrum data, as
the data often contains private or locational information
that requires careful treatment that cannot be found in
un-customizable, public pipeline solutions. Finally, it is
important to note that there are already several levels
of solutions at various price points for spectrum mon-
itoring for a single location. However, if a user wants
access to distributed spectrum data that is being read
from sensors scattered across several different geograph-
ical regions–there are not as many solutions available.
This key pain point, when combined with the aforemen-
tioned requirements of cost, privacy, usability, high qual-
ity, and reliability, necessitates a new system to ensure
these qualities, and we introduce our project, SpecPipe.

2.2 Our Proposed Solution

Our project, SpecPipe, proposes 1) an adaptable end-to-
end data pipeline for radio spectrum data, 2) detailed tu-
torials for audiences of diverse experience levels to build
their own custom spectrum pipelines, and 3) An exam-
ple Airplane Tracker application built upon our pipeline
to showcase how our pipeline can be adapted to process
diverse data types, to ultimately improve public accessi-
bility to spectrum data.

Our primary product is the end-to-end spectrum data
pipeline or automated processing solution, which con-
sists of several modularized components working to-
gether to transform raw human-unreadable radio spec-
trum data into a final user-facing application or visual-
ization. In order to develop this pipeline, we utilize af-
fordable state-of-the-art cloud technologies for risk and
fault tolerance as well as scaling, in order to make our
pipeline more robust. Risk tolerance involves assess-
ing and managing potential threats to the functionality
of the pipeline, while fault tolerance ensures that the
system can continue functioning despite failures or at
the very least fail gracefully. Scaling is especially im-
portant for our use case since our pipeline should be
able to support data at a kb/s rate from tens of de-
vices cheaply and be able to scale to support higher
data rates from thousands of sensors. Our data pipeline
is ultimately lightweight, portable, robust, observable,
and intelligent–permitting easy integration with current
AI/ML analytical engines.

Alongside our technical contributions, we maintain a
unique focus on prioritizing user-friendliness and the ac-
cessibility of our technology to broader audiences by pro-
viding detailed documentation and start-from-scratch
tutorials. As our long-term vision, we aim to make tradi-
tionally under-utilized spectrum data more accessible to
our target audience of researchers and hobbyists, as well
as the general public at large, for their own applications

and purposes.

Alongside our data pipeline product and documenta-
tion/tutorials, we also introduce an Airplane Tracker as
an example of a domain-specific spectrum application
that users can build on top of our pipeline. The Airplane
Tracker works with airplanes in flight emitting a certain
form of radio data that occupies a specific portion of
the spectrum. This example of a domain-specific spec-
trum application showcases how our data pipeline can
be adapted to process this data and ultimately power an
online Airplane Tracker application that allows you to
see where planes are flying on an interactive map.

2.3 Value Claims

Our end-to-end data pipeline is the first of its kind in
being open-source, customizable, and affordable, and is
designed especially for motivated individuals to be able
to replicate, adapt, and utilize it–without the need for
extensive company-level resources. Ultimately, the flexi-
bility of our pipeline allows users to process diverse types
of spectrum data, while still maintaining necessary secu-
rity and control over private data that they may feed
into their pipelines.

Figure 1: Key Properties and how they are ensured in
SpecPipe



3 Literature Review

3.1 Industry Connections

Our SpecPipe project has connections with the commu-
nications and PaaS (Platform-as-a-service) industries.
The communications industry, or the telecom industry,
provides network and computing services. The PaaS in-
dustry tries to build “a complete development and de-
ployment environment in the cloud, with resources that
enable organizations to deliver everything from simple
cloud-based apps to sophisticated, cloud-enabled enter-
prise applications” (Gómez). These industries are deeply
intertwined with our project since we are building a gen-
eral multi-functional data pipeline in the cloud that is
easy to access and use. Our cloud-based design enables
access to core pipeline services from anywhere in the
world, and also makes the pipeline easily scalable.

3.2 Relevant Approaches in Data Pipeline
Design

We first examine modern data pipeline implementations.
One example is Apache Kafka which is a “publish sub-
scribe messaging system. . . that is scalable, durable, and
fault tolerant” (Sharvari and Sowmya 2019). While
Kafka is used by many it is not ideal as it cannot be
used in cases when real-time data is critical and mes-
sages cannot be lost (Sharvari and Sowmya 2019, Bhat
and Bhat 2020). Also, despite its strong functionality,
building and fine-tuning the Kafka cluster can be a chal-
lenging process for new users and it is not lightweight,
so there is a need for better solutions.

Another example is the ELK stack, consisting of Beats,
Logstash, and Elasticsearch, which is a widely used data
processing system. However, it only works with time
series data and its complexity prevents non-professional
users from using the system (Bavaskar et al. 2019).

The combination of InfluxDB and Grafana is yet an-
other popular choice of technologies for data pipelines.
However, a drawback of this approach is that InfluxDB
stores data in memory and on disk, which can lead to
high storage costs for large datasets. Also, InfluxDB is
mainly designed for time-series data, while the spectrum-
related data contains more than that.

Another important reason behind searching for alterna-
tive pipeline designs is that the diversity of representa-
tions and downstream dataproducts for spectrum data
requires the ability to plug in custom processing blocks,
which none of the above methods are designed to en-
able easily. Having covered the current approaches with
data pipeline design, we will next examine the current
approaches for dealing with spectrum-specific data.

3.3 Relevant Approaches in Spectrum
Sensing

Aside from the design of our data pipeline, our project
aims to explore ways to make the process of detecting,
harnessing, and utilizing spectrum data more accessible
to users. When it comes to using spectrum data, the
traditional approaches fall short through being too ex-
pensive, complex, difficult to scale, hard to maintain,
and lacking data accuracy, or some combination of these
factors.

Recent research work has extensively examined design-
ing and building sensors that are low cost, smaller in size,
and more energy efficient, in order to reduce expenses
in deploying dense spectrum sensor networks. Kleber
et al. (2016) propose RadioHound, a spectrum sens-
ing system consisting of several “client sensors, a cen-
tralized controller, and a user interface.” Notably, the
RadioHound system introduces a cost-efficient spectrum
sensor design–an RTL-SDR (Realtek Software-Defined
Radio) device hosted by a credit-card sized Raspberry
Pi microcomputer. Saber et al. (2018) also employ this
low-cost RTL-SDR/Raspberry Pi spectrum sensing ap-
proach and use MATLAB-Simulink software to analyze
the data. The sensing methods proposed by both re-
search works resonate with our project’s key values of
making both our software and hardware solutions acces-
sible to the public, and so we adopted a similar strategy
of constructing simplistic spectrum sensors with an RTL-
SDR device that can be hosted by either a Raspberry Pi
or the user’s personal computer.

Another particularly impactful line of research in the
area of spectrum sensing has been the creation of col-
laborative sensing networks. This idea of leveraging
the collaboration of many users and sensors in order to
form a larger sensing network capable of handling larger-
scale sensing tasks has been well-explored in the broader
domain of Internet of Things (IoT) (He et al. 2022).
Within the realm of spectrum sensing, researchers have
introduced novel ways to optimize data collection via
these collaborative networks. Smith et al. (2019) pro-
pose a mechanism to allow a sensing system’s central
processor to make decisions based on minimal informa-
tion from the collaborative network. Implementing this
strategy in the context of our own project will reduce
data transmission and help us save costs especially on
the cloud side of our data pipeline. Another work, by Yu
et al. (2013), proposes an incentivizing reputation mech-
anism to mitigate the potential presence of selfish users
in the collaborative network–an important consideration
for any system including ours which caters to outside
users/general public. These principles are echoed in col-
laborative game-theoretic mechanisms–such as the idea
of proof-of-work/state used in blockchain–which can be



used to incentivize cooperation and discourage exploita-
tion in anonymous distributed systems. These consid-
erations are especially relevant in the case of users who
would like to build and maintain public versions of our
pipeline technology.

Finally, Rajendran et al. (2018) built Electrosense, a
platform that exposes spectrum data to the public do-
main through a collaborative monitoring network. The
Electrosense system comes close to our project vision
as a competitor, however it can still pose some acces-
sibility and cost limitations especially for individuals
and smaller organizations, and it is overall more focused
on making raw data accessible, rather than additionally
providing data processing solutions as our pipeline does.

3.4 Impacts from Preliminary Research

Ultimately, based on our examination of existing work in
the realms of Spectrum Sensing and Collaborative Sens-
ing Networks, we have incorporated several key ideas
into our project. First, we built an affordable spectrum
sensor using an RTL-SDR radio device connected to a
Raspberry Pi microcomputer or personal laptop com-
puter. This cheap and simple-to-make “DIY” sensor
can be used to gather nearby spectrum signals which
are later fed as input to our data pipeline.

Next, existing literature in this area has explored ex-
tensively the Collaborative Sensing Network, and we
have used this model as the basis of our sensing system
design–allowing for multiple users and sensors spread
across geographical regions to all send signals to a cen-
tralized data pipeline which makes intelligent decisions
regarding processing and ensuring the smooth flow of
information.

4 Final Design – Details & Design
Choices

4.1 Materials & Key Terms

For this project, there are a few Hardware Materials
(Figure 2), several Software Materials for the General
Pipeline (Figure 3), and other Software Materials specif-
ically for certain parts of the design (Figure 4).

Figure 2: Key terms of Hardware Materials used

Figure 3: Key terms of Software Materials used in de-
signing General Pipeline



Figure 4: Key terms of additional Software Materials

4.2 Details & Design Choices

The General Pipeline consists of 5 different components:
Client, Annotator, Search & Storage Engine, Backend
Web Server, and the Frontend Application. We addi-
tionally provide a System Health dashboard and Docu-
mentation/Tutorials. For our example Airplane Tracker
Application, when a spectrum radio data packet is first
processed by our Software-Defined Radio it will start be-
ing processed through the first five components until the
corresponding airplane location appears as a point in the
frontend application. The system health dashboard will
monitor the pipeline in real time and the documentation
will allow users to create their own application on top of
our general pipeline. In this section, we will discuss the
implementation detail and design choices for each of the
7 components.

4.2.a General Pipeline Design: Client Program

As the very first step, users will set up their radio data
receiver (e.g. RTL-SDR (Realtek Software-Defined Ra-
dio)) connected to a Raspberry Pi microcomputer or
personal computer. Based on the desired radio infor-
mation, the user will select the proper frequency, band-
width, gain, and other parameters of the device, and
then the RTL-SDR will pass on the information in a raw
digital format for further processing with software. The
client program will be customized for the specific data
to decode and process the information from the signal.

For our example Airplane Tracker, our RTL-SDR de-
vice will constantly listen and report the ADS-B (Auto-
matic Dependent Surveillance-Broadcast) signals from
airplanes in flight. This signal is an ADS-B packet
transmitted by an aircraft in hexadecimal format, and
can be seen in Figure 5. Each packet includes a 24-bit
ICAO address (”A2FCF2” in figure) and a data pay-
load (”1D59F0D8A109CCE2A2D6A3” in figure) which
is later unpacked in our data pipeline and contains infor-
mation about the aircraft’s position, altitude, and other
relevant fields.

Figure 5: ADS-B Packet

The client program will process the raw ADS-B packet
into a readable format by using the dump1090 soft-
ware which processes and decodes the data into a more
human-readable format, in this case a JSON file. The
client program returns this human-readable data as dis-
played in table-format in Figure 6 to be used in the next
step of our pipeline. Now we have easy access to the air-
plane’s ICAO identification number, longitude, latitude
and height.



Figure 6: Data packet after processing by Client program

The Client is lightweight as it doesn’t need to worry
about other compute-intensive tasks such as annotating,
ordering and processing of the data, which makes it eas-
ily deployable to a single board computer or embedded
device such as Raspberry Pi. Also, these characteristics
make it possible to deploy the Client multiple devices at
the same time. So far we have tested up to 5 devices
sending signals at the same time (distributed between
California and Colorado). The setup of the Client is also
straightforward with the help of our tutorial and multi-
ple users have successfully set up their Clients using our
documentation.

4.2.b General Pipeline Design: Annotator

The Annotator is a module within our Data Pipeline
that is responsible for enriching the processed radio data
with additional meaningful information. In a user’s cus-
tomized pipeline, this is the stage where they can supple-
ment the incoming radio data with additional descriptive
information that they would like for their application.
For example, if a user wanted to make a music applica-
tion and was reading in music-related radio data which
contained the name of the song and artist, they may wish
to append information from other data sources to each
packet from available data sources–such as the number
of listeners, days on top charts, etc.

In our Airplane Tracker application example, after the
radio data broadcast by airplanes is sensed and fed into
the NATS pipeline by the Client, it is passed to the An-
notator, which then programmatically adds in important
information necessary to create an airplane tracker ap-
plication. For our application, we downloaded data from

the FAA’s (Federal Aviation Administration) Releasable
Aircraft Database. This database contains information
on the nation’s registered aircraft that the Annotator
uses to annotate the bare broadcast data it receives as
input with the goal to add the manufacturer, model,
unique United States aircraft identifier, and aircraft’s
name to each individual packet which we can later dis-
play on our frontend application.

Figure 7 is a screenshot of data items from our pipeline
that have been processed by the Annotator module.
Each JSON entry contains fields with specific character-
istics of airplanes as described above like the ICAO num-
ber, manufacturer, registration, and location info–which
has all been extracted or populated by the Annotator
module in our pipeline.

Figure 7: A detailed look into a single packet after it is
processed by Annotator module

https://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download
https://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download


4.2.c General Pipeline Design: Search &
Storage Engine

ElasticSearch (ES) is a distributed search and analytics
engine that provides database-like functionality to store,
search, and/or analyze real-time data. This is a core
component in our pipeline that comes sequentially af-
ter the Annotator. It consumes all the annotated data
from the pipeline and serves multiple purposes–including
monitoring the Client status, storing the data, and fi-
nally serving as a persisten database to the backend flask
server.

ES has the power to store a large amount of time-based
log-like data, and its great scalability power allows its
service to be highly-available and robust. We utilize
ES to store 7-day spectrum data flowing through the
pipeline for three main reasons: 1) ES allows us to con-
trol the rate of data flow from the annotator to the web
server since this data is often not consistent in rate and
can overwhelm the web server, causing failure. 2) Storing
the data for any research analysis or debugging purposes.
3) For future steps, we want to enable Machine Learn-
ing integrations, which requires the data to be stored for
training and test data.

Building out early iterations of our system played a sig-
nificant role in helping us better refine our design choices
and core values for our product. Initially, instead of us-
ing ES we were using MySQL for the backend persis-
tent layer. MySQL is a relational database management
system (RDBMS) that follows strict rules to ensure the
integrity of the data inside as the topmost priority. How-
ever, we found that with the increase of data size and
data issuing rate, over time, the MySQL capacity could
not catch up and became a bottleneck in the pipeline. To
address this problem, we turned to ElasticSearch (ES),
a fast, scalable open search and analytics solution for
time-based log-like data. A key insight in this transition
is that since our collaborative sensing network contains
multiple spectrum sensors often providing repeated and
close data points, it is therefore crucial for our pipeline to
be able to handle large amounts of incoming data within
short time spans. ES is just designed for dealing with
this scenario, which will ultimately add to the perfor-
mance of our overall system. With a modest trade-off
with data integrity, we improve the speed of data index-
ing by 5 times using ES in lieu of MySQL. Moreover, ES
has rich add-ons such as machine learning integrations,
which can be used to easily build up a machine learning
service on top of the data inside the ES.

To allow ES to perform at its full capacity while also
suiting the needs of our system, we employed a series of
performance tuning modifications to ES. For example,
we divided the data into multiple indexes based on read

date, and set up an index template for these data to have
a dedicated lifecycle policy. We divide the temperature
of index data into the hot, warm and delete (cold) stages.
As per the policy, each index will be in the hot stage at its
creation, in which we will instruct ES to assign multiple
replicas for it to accelerate the read rate. After a fixed
amount of days, the index will go into the cold state,
where the write operation to it is forbidden but the read
operation is still guaranteed. Finally, it will be deleted
after a month to preserve storage space on our server.

4.2.d Backend Web Server
The Backend Web Server’s purpose is to fetch data using
a query of preference from ElasticSearch, and pass the re-
sulting data to the frontend application. We chose to use
the Python micro-web framework Flask for the Backend
Web Server since Flask is simple and easily integrates
with other features. The Flask web server also provides
multiple API endpoints for the web application to access
the data. By designing a lightweight and customizable
web server, we provide a framework that users can easily
modify or extend to serve different applications.

For our Airplane Tracker, the Backend Web Server
fetches the airplane data from ElasticSearch and passes
it to the frontend Airplane Tracker display. The Back-
end Web Server is able to query with a specific time
interval from which to fetch and serve data. The Flask
Backend Web Server provides API endpoints for the Air-
plane Tracker Web Application to access. For example,
one API endpoint allows the frontend to request airplane
data between selected intervals. When the web server re-
ceives a request from the frontend, it determines what
action to take based on the endpoint specified. Based on
this specification the web server calls external services
like ElasticSearch to fetch the required data. After that,
the web server modifies the data in the correct format
and sends the response to the frontend application.

4.2.e Frontend Application
The Frontend component functions to display the com-
pletely processed data from the pipeline in a specific form
or application which the user had in mind for visualiz-
ing/utilizing the radio spectrum data. When a visitor
interacts with the frontend web application, the applica-
tion sends an HTTP request to the Flask web server. As
described above, the web server in turn queries Elastic-
Search, and finally sends the relevant information back
to the frontend, where the user interface is updated ac-
cordingly.

For the frontend component of the pipeline, when a user
is creating their own customized version it would be very
unique to the data and application they are pursuing.
Therefore this is one section of the pipeline that will most



likely have to be modified significantly by the user, but
we have included details on our application so whichever
parts are relevant can be used.

For our Airplane Tracker Application we aimed to have
an interactive map with live airplane locations based on
data read from our spectrum data collection devices. In
alignment with that goal we had three subgoals to at-
tain which are a) a website that can be accessed by any-
one with internet access, b) a easy to understand map
visualization so people can easily see plane trajectories
and also click and learn more about each plane, and fi-
nally c) allow users to select a data and time range to
see airplane flight trajectories from the past if needed.
To achieve three goals we used a) AWS Amplify, b) Re-
act and Mapbox GL, and c) a third-party library, react-
datetimerange-picker.

4.2.f System Health Dashboard

To monitor our pipeline, we built a system health dash-
board for users and system administrators to check the
pipeline status. We decided to use a combination of two
tools– Prometheus and Grafana–since they work well
together and are easily integrable into the rest of the
NATS framework. Prometheus is a monitoring system
and time-based database, which is paired with Grafana
for graphical analysis of the collected metrics. Once we
decided on the necessary technologies, we started work-
ing on connecting and enabling the flow of information
between NATS, Prometheus, and Grafana. We used
the Prometheus NATS exporter to collect metrics from
NATS and expose them to Prometheus. From there,
Prometheus is able to periodically scrape metrics and
data from the exporter and stores the information in
a time-series database. Finally, Grafana visualizes the
metrics collected by Prometheus on the dashboard for
users to access.

4.2.g Documentation

A core aspect of our project is the documentation and
tutorials we provide, to allow others to replicate and tune
our work for their own use cases. Our aim was for the
documentation to be available on a publicly-accessible
website, and there are many open-source documentation
building tools to accomplish this–such as Sphinx, Git-
book, Docusaurus and Hugo. We chose to utilize the
Docusaurus platform to write and deploy our documen-
tation site because it has a simple and intuitive setup
process that can help users like ourselves quickly create
and deploy documentation websites. Also, Docusaurus
generates static HTML pages, which makes the site quick
to load and easy to cache. This can result in better per-
formance in comparison to dynamic sites like GitBook.
Last but not least, Docusaurus is backed by Facebook

and has a large and active community of contributors,
which means it receives frequent updates, bug fixes, and
improvements.

5 Deliverables

5.1 System Health Dashboard

Since our pipeline contains several components and
pieces that work together in conjunction, it becomes
complex to monitor the system and debug any failures.
Therefore, our comprehensive system health dashboard
(as shown in Figure 8) is essential in allowing us to mon-
itor the pipeline health in one central location through
various metrics and visualizations. Specifically, we use
the dashboard to detect various critical problems–such
as excessive pending messages, storage overuse, potential
packet loss, etc. Ultimately, the dashboard ensures the
quality of observability for our pipeline, and is crucial as
it entails the creator or operator’s ability to monitor the
health of the overall system.

Figure 8: the System Health Dashboard

5.2 Documentation & Tutorials

As mentioned earlier, a major dimension of our project is
to improve accessibility of spectrum data and processing
solutions for the general public, and in order to achieve
that goal we developed detailed documentation to allow
users to replicate and build their own pipelines in a sim-
ilar fashion to ours.

Our documentation includes detailed steps to build our
pipeline for the Airplane Tracker example and guides
users through the customization process to build their
own pipeline. There are also debugging guides through-
out, describing common issues we faced throughout the
process. Our final set of documentation and tutorials can
be viewed through a simple web URL and will appear as
shown in Figure 9.



Figure 9: Screenshots from our Documentation website

5.3 Frontend

The Frontend refers to the public web application for
our Airplane Tracker, which showcases the data from
the spectrum resources in a way that is understandable
for viewers. The web application opens to a map where
airplane markers are updated in real-time every 20 sec-
onds according to the actual locations being broadcast
by planes currently in flight. Each airplane dot/marker
on the map represents a logged location at a certain time,
with a trail of the same color markers representing a sin-
gle plane. By clicking on any marker, a popup will dis-
play additional information such as the airplane’s ICAO
number, altitude, time of location broadcast, the aircraft
type, etc., as can be seen in Figure 10 below.

Figure 10: Popup information on a specific plane

As in Figure 10, there can be multiple reporters that
detect the same broadcast by one plane. To distinguish
between different reporters, the web application has a
“filter by reporter” functionality, so users can only see
markers detected by one specific reporter of their inter-
est, shown in 11.

Figure 11: Airplane Tracker showing markers of one spe-
cific reporter

While the web application automatically starts showing
planes in real-time, there is also the option to select a
desired interval and see the plane trajectories during that
time range in the top-left corner of the application. In
Figure 12, we specified the start time to be 12:00 pm on
Mar. 15, 2023 and the end time to be 12:04 pm on Mar.
15, 2023. Currently, we have limited the time range to
be within 5 mins to avoid fetching tremendous amounts
of data.

Figure 12: The Airplane Tracker application with many
real-time plane trajectories

6 Evaluation

6.1 Stress Testing

6.1.a Purpose of Stress Testing

Stress testing is a type of testing used to evaluate the
stability and robustness of a system or application un-
der high-stress conditions, such as heavy load or limited
resources. The purpose of stress testing is to identify and



address any weaknesses or vulnerabilities in the system
that could lead to crashes, failures, or other performance
issues. By simulating extreme conditions, stress testing
helps ensure that the system can handle unexpected sce-
narios and maintains its functionality and performance.

6.1.b Metrics of Success for Stress Testing
We measured the metrics by using a local laptop as a
client and publishing mock data to the pipeline at a con-
stant speed. It is achieved by skipping the RTL-SDR
device and sending human-readable airplane data to the
pipeline directly. Since we used a shared queue for each
client to translate and send messages, we used the exact
same data structure in the stress testing script so that
it can most accurately replicate the real use case of ra-
dio spectrum data being broadcasted, inserted into the
pipeline, and removed from the queue of data after being
processed.

The efficacy of our pipeline is determined by two essen-
tial components. The initial factor is the latency, where
we strive to optimize the time taken by the pipeline to
process incoming data. This metric is determined by
calculating the time difference between the message’s
transmission from the client and the time it is received
by the Frontend application. The second element is the
throughput, which gauges the quantity of data that our
pipeline can handle concurrently. To quantify this, we
count the number of messages that are processed by the
Frontend application. We have tested our system with
various numbers of incoming messages per second to bet-
ter understand how our pipeline reacts to different data
flow rates in terms of latency and throughput.

6.1.c Stress Testing Results: Key Trends,
Associations, Pipeline
Figure 13 is a graphical representation of the latency
for different numbers of messages sent by the client, per
second. The blue line represents the latency before an
optimization while the orange line represents after an
optimization. The optimization made to improve the
latency to reasonable levels was to decrease the batch
size and timeout so that the latency can be largely im-
proved while maintaining a stable system. For the air-
plane tracker application, the number of messages per
second is usually less than 50 so the latency for this ap-
plication is mostly less than 1.4s.

Figure 14 is a graphical representation of the throughput
for different numbers of messages sent by the client per
second. The throughput compares the number of mes-
sages seen by the application versus the number of mes-
sages sent by the client. The blue line is our pipeline’s
throughput representation while the orange dashed line
is the theoretical representation with slope being 1 since

Figure 13: Latency

all messages should be delivered in time no matter how
many messages are sent. Our system achieves peak per-
formance when the number of messages is 800/s or be-
low, which is far beyond the requirement for our current
Airplane Tracker example application, but we can see
that past that rate, our pipeline is not able to scale to
full efficiency.

Figure 14: Throughput

6.2 User Study with Tutorials

In order to achieve our goal of enabling others to create
their own end-to-end pipelines with spectrum resources,
user studies to test the validity of our documentation and
tutorials are essential. Our assessment involved collabo-
rating with a user located in Colorado. This assessment
was to test our instructions for adding an additional ra-
dio collection device to our Airplane Tracker pipeline.
The user was provided with detailed documentation in-



structing them on how to use their own software-defined-
radio (SDR) to collect and add plane information from
their location in Colorado. This assessment was a suc-
cess as the user could follow the instructions without
needing additional assistance. We are now able to see
airplanes in our Frontend in the Colorado areas as well
as shown in Figure 15 below.

Figure 15: Airplane Tracker data in the Colorado region

This user study highlighted the importance of creating
easy-to-use documentation and by following up with ad-
ditional user studies targeting users of various levels of
experience, we can continue to refine and improve the
quality and cohesiveness of our documentation.

7 Conclusion

7.1 Ultimate Significance of Results

Our final product proves that an end-to-end pipeline can
be created in an affordable and accessible manner with-
out the need for large-scale resources. Our stress testing
has proved that this pipeline is robust, lightweight, and
portable, to allow users to efficiently process and ana-
lyze spectrum data. Our user study for our tutorials
has proven that our tutorials are detailed and effective
enough for others to understand and follow.

This research represents a significant contribution to the
field of spectrum data processing and analysis. Our

pipeline has the potential to democratize access to spec-
trum data and enable a broader range of stakeholders to
leverage this valuable resource for their own purposes.

7.2 Implications for Future Work &
Potential Next Steps

Based on our assessments, we propose several directions
for future work with a focus on our data pipeline design
and the user experience.

First, we suggest additional user studies and testing to
validate the effectiveness of our tutorials for users with
varied experience levels. This can help identify any po-
tential areas for improvement and refine the tutorial for
optimal usability by diverse audiences. There are also
several Machine Learning (ML) algorithms that can be
utilized to improve our pipeline. For example, ML can be
utilized for an anomaly detection task to filter out poten-
tial malicious or inaccurate data. Elasticsearch provides
us with ML APIs to enable this, allowing for the creation
of custom layers on top of our current pipeline.

Furthermore, when processing high-throughput data at
scale, there are limitations to what messaging systems
like NATS can handle on their own. Alternative mes-
saging frameworks like ZeroMQ or nanomsg can address
the scaling needs as they offer advanced features like
proxy servers that can help to alleviate the limitations
of NATS. By using proxies, data can be transferred be-
tween nodes without the need for the central messaging
system to be involved in every transaction, which can
significantly reduce the load on the system. To make
use of this advanced functionality while still leveraging
the benefits of NATS, the solution is to use ZeroMQ
or nanomsg orchestrated via control messages sent over
NATS. By doing so, the system can benefit from the
scalability and performance of these messaging systems
while still preserving the reliability and message delivery
guarantees of NATS.

These proposed directions for future work have signifi-
cant implications for the field of spectrum data process-
ing and analysis. The refinement of data pipeline design
and user accessibility can facilitate the development of
more effective and user-friendly applications in various
domains such as telecommunications and security.



8 References

Bavaskar, Pranita P., Omkar Kemker, and Aditya Ku-
mar Sinha. “A Survey On: ’Log Analysis With Elk
Stack Tool’.” International Journal of Research and
Analytical Reviews 6, no. 4 (2019).

Bhat, Poojya J, and Priya D. “Modern Messaging
Queues – Rabbitmq, Nats and Nats Streaming.”
International Journal of Recent Technology and
Engineering (IJRTE) 9, no. 2 (2020): 402–8.
https://doi.org/10.35940/ijrte.b3551.079220.

Gómez, Cristian Osvaldo. “Apuntes Azure.”
GoConqr. Accessed April 13, 2023.
https://www.goconqr.com/note/23097218/apuntes-
azure.

He, Shibo, Kun Shi, Chen Liu, Bicheng Guo,
Jiming Chen, and Zhiguo Shi. “Collabora-
tive Sensing in Internet of Things: A Com-
prehensive Survey.” IEEE Communications Sur-
veys & Tutorials 24, no. 3 (2022): 1435–74.
https://doi.org/10.1109/comst.2022.3187138.

Kleber, Nikolaus, Abbas Termos, Gonzalo Mar-
tinez, John Merritt, Bertrand Hochwald, Jonathan
Chisum, Aaron Striegel, and J. Nicholas Laneman.
“RadioHound: A Pervasive Sensing Platform for
Sub-6 GHz Dynamic Spectrum Monitoring.” 2017
IEEE International Symposium on Dynamic Spec-
trum Access Networks (DySPAN), October 19, 2016.
https://doi.org/10.1109/dyspan.2017.7920764.

R. Aurangzaib, W. Iqbal, M. Abdullah, F. Bukhari,
F. Ullah, and A. Erradi, ”Scalable Containerized
Pipeline for Real-time Big Data Analytics,” 2022
IEEE International Conference on Cloud Comput-
ing Technology and Science (CloudCom), Bangkok,
Thailand, 2022, pp. 25-32, doi: 10.1109/Cloud-
Com55334.2022.00014.

S. Rajendran et al., ”Electrosense: Open and Big Spec-
trum Data,” in IEEE Communications Magazine,
vol. 56, no. 1, pp. 210-217, Jan. 2018, doi:
10.1109/MCOM.2017.1700200.

Saber, Mohammed, Hatim Kharraz Aroussi, Ab-
dessamad El Rharras, and Rachid Saadane.
“Raspberry Pi and RTL-SDR for Spectrum
Sensing Based on FM Real Signals.” 2018
6th International Conference on Multime-
dia Computing and Systems (ICMCS), 2018.
https://doi.org/10.1109/icmcs.2018.8525867.

Smith, Peter J., Rajitha Senanayake, Pawel A. Dmo-
chowski, and Jamie S. Evans. “Distributed Spec-
trum Sensing for Cognitive Radio Networks Based
on the Sphericity Test.” IEEE Transactions on

Communications 67, no. 3 (2019): 1831–44.
https://doi.org/10.1109/tcomm.2018.2880902.

T, Sharvari & K, Sowmya. (2019). A study on Modern
Messaging Systems- Kafka, RabbitMQ, and NATS
Streaming.

Yu, Chung-Kai, Mihaela van der Schaar, and Ali H.
Sayed. “Distributed Spectrum Sensing in the Pres-
ence of Selfish Users.” 2013 5th IEEE International
Workshop on Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), 2013.
https://doi.org/10.1109/camsap.2013.6714090.


	Executive Summary
	Introduction
	Problem & Opportunities
	Our Proposed Solution
	Value Claims

	Literature Review
	Industry Connections
	Relevant Approaches in Data Pipeline Design
	Relevant Approaches in Spectrum Sensing
	Impacts from Preliminary Research

	Final Design – Details & Design Choices
	Materials & Key Terms
	Details & Design Choices

	Deliverables
	System Health Dashboard
	Documentation & Tutorials
	Frontend

	Evaluation
	Stress Testing
	User Study with Tutorials

	Conclusion
	Ultimate Significance of Results
	Implications for Future Work & Potential Next Steps

	References

